p-divisible groups

J.M. Commelin

January 19, 2016

1 NOTATION. — In these notes, instead of lim we write colim, and instead of lim we write lim.

2 — Let K be a number field. Let A be an abelian variety over K. Let ℓ be a prime number. Let $A_{\ell^{\infty}}(\bar{K}) = \bigcup_n A[\ell^n](\bar{K})$ denote the ℓ -divisible subgroup of $A(\bar{K})$. Let W be a $\operatorname{Gal}(\bar{K}/K)$ -stable subgroup of $A_{\ell^{\infty}}(\bar{K})$. For every n, let B(n) denote the quotient A/W_{ℓ^n} .

We want to bound the height of B(n). More precisely, we want the following result.

3 THEOREM. — For $n \gg 0$, the height h(B(n)) does not depend on n.

In this talk I will not prove this theorem. Rather, I will present an overview of some facts about p-divisible groups, and in the end prove a proposition that will be very useful for proving theorem 3.

4 — We will use [1] as main reference.

Let R be a ring (or scheme). Let p be a prime number. Let h be an integer ≥ 0 . By definition, a group scheme over R has rank h if it is locally free of rank h over R (in other words, it is defined by a Hopf algebra that is locally free of rank h over R).

5 DEFINITION. — A *p*-divisible group of height h is an inductive system

 $G = (G_\nu, i_\nu)_{\nu > 0}$

where G_{ν} is a finite group scheme over R of order $p^{\nu h}$, and such that for each $\nu \geq 0$, the sequence

$$0 \longrightarrow G_{\nu} \xrightarrow{i_{\nu}} G_{\nu+1} \xrightarrow{|p^{\nu}|} G_{\nu+1}$$

is exact. (So G_{ν} is the set of p^{ν} -torsion points in $G_{\nu+1}$.)

A homomorphism of *p*-divisible groups is what you think it is.

Probably the best known example of a *p*-divisible group is given by

 $G_{\nu} = (\mathbb{Z}/p^{\nu}\mathbb{Z})^h$ and $G = \operatorname{colim} G_{\nu} = (\mathbb{Q}_p/\mathbb{Z}_p)^h$.

The next best known example is $A_{p^{\infty}}(\bar{K}) = \operatorname{colim} A[\ell^{\nu}](\bar{K})$, where A is an abelian variety over a field K, as in §2.

6 CONSEQUENCES OF THE DEFINITION. — Let G be a p-divisible group. By iteration, we obtain closed immersions $i_{\nu,\mu}: G_{\nu} \to G_{\nu+\mu}$, for all $\nu, \mu \ge 0$. (Note that $i_{\nu,1} = i_{\nu}$.) These maps $i_{\nu,\mu}$ identify G_{ν} with the kernel of $[p^{\nu}]$ in $G_{\nu+\mu}$.

Consider the following diagram, with exact row and column.

$$0 \longrightarrow G_{\mu} \xrightarrow{i_{\mu,\nu}} G_{\nu+\mu} \xrightarrow{[p^{\mu}]} G_{\nu+\mu} \xrightarrow{\uparrow} G_{\nu} \xrightarrow{[i_{\nu,\mu}]} G_{\nu}$$

Since the composition $[p^{\nu}] \circ [p^{\mu}] = [p^{\nu+\mu}]$ is identically 0 on $G_{\nu+\mu}$, we see that $[p^{\mu}]$ factors via a map $j_{\nu,\mu}: G_{\nu+\mu} \to G_{\nu}$.

$$0 \longrightarrow G_{\mu} \xrightarrow{i_{\mu,\nu}} G_{\nu+\mu} \xrightarrow{[p^{\mu}]} G_{\nu+\mu} \xrightarrow{[p^{\nu}]} G_{\nu+\mu} \xrightarrow{i_{\nu,\mu}} G_{\nu} \xrightarrow{i_{\nu,\mu}} G_{\nu} \xrightarrow{i_{\nu,\mu}} G_{\nu} \xrightarrow{i_{\nu,\mu}} G_{\nu} \xrightarrow{i_{\nu,\mu}} 0$$

Observe that $i_{\nu,\mu} \circ j_{\mu,\nu} = [p^{\mu}]$. Because $i_{\nu,\mu}$ is an immersion, the sequence

$$0 \longrightarrow G_{\mu} \xrightarrow{i_{\mu,\nu}} G_{\nu+\mu} \xrightarrow{j_{\mu,\nu}} G_{\nu}$$

is exact. In fact, since the order of G_{μ} and G_{ν} add up to the order of $G_{\nu+\mu}$, we find that the last map is in fact a quotient map, and we obtain the short exact sequence

$$0 \longrightarrow G_{\mu} \xrightarrow{i_{\mu,\nu}} G_{\nu+\mu} \xrightarrow{j_{\mu,\nu}} G_{\nu} \longrightarrow 0.$$

We will write j_{ν} for $j_{1,\nu}$.

7 TATE MODULES. — Let R be an integral domain, with field of fractions K. Assume char K = 0and let \overline{K} be an algebraic closure of K. Let G be a p-divisible group over R of height h. The *Tate module* of G is denoted T(G), and is by definition $\lim G_{\nu}(\overline{K})$, where limit is taken over the morphisms j_{ν} . Dually, one defines $\Phi(G)$ as colim $G_{\nu}(\overline{K})$, where the colimit is over the maps i_{ν} . *N.b.:* There is a notion of "points of G" which we do not need for the main result of this talk. It coincides with $\Phi(G)$ when G is étale, but contains $\Phi(G)$ as torsion subgroup in the general situation. Since K has characteristic 0, the groups $G_{\nu} \otimes K$ are étale, and hence T(G) is isomorphic as \mathbb{Z}_p -module to \mathbb{Z}_p^h , while $\Phi(G)$ is isomorphic to $(\mathbb{Q}_p/\mathbb{Z}_p)^h$. Furthermore, there is a continuous action of $\operatorname{Gal}(\overline{K}/K)$ on T(G) and $\Phi(G)$. There are canonical isomorphisms (of Galois modules)

 $\Phi(G) \cong T(G) \otimes_{\mathbb{Z}_p} (\mathbb{Q}_p / \mathbb{Z}_p) \quad \text{and} \quad T(G) \cong \operatorname{Hom}(\mathbb{Q}_p / \mathbb{Z}_p, \Phi(G)).$

Observe that one can recover the Galois module $G_{\nu}(\bar{K})$ from $\Phi(G)$ by taking the kernel of $[p^{\nu}]$. Using the well-known fact that a finite étale group scheme over a field is determined by its Galois module of \bar{K} -points, we may thus recover the generic fibre $G \otimes_R K$ from $\Phi(G)$ or T(G).

8 COROLLARY. — The assignment $G \mapsto T(G)$ establishes an equivalence of categories between the category of p-divisible groups over K and free \mathbb{Z}_p -modules of finite rank with a continuous action of $\operatorname{Gal}(\overline{K}/K)$.

9 PROPOSITION (PRP. 12 OF [1]). — Let R be an integrally closed, Noetherian, integral domain, with field of fractions K. Fix a prime number p. Let G be a p-divisible group over R. Let T(G)be the Tate module of G. Let W be a direct summand of T(G) over \mathbb{Z}_p that is stable under the action of $\operatorname{Gal}(\overline{K}/K)$. Then there exists a p-divisible group Γ over R, and a morphism $\phi: \Gamma \to G$ such that ϕ induces an isomorphism $T(\Gamma) \cong W$.

Proof. By corollary 8 we immediately obtain a p-divisible subgroup $H_* \subset G \otimes K$. We want to take the closure H of H_* in G. To make this precise, let B_{ν} be the R-algebra corresponding to G_{ν} . Let $A_{*\nu}$ be the K-algebra corresponding to $H_{*\nu}$, and consider $u_{\nu} \colon B_{\nu} \otimes_R K \to A_{*\nu}$ corresponding to $H_{*\nu} \hookrightarrow G_{\nu} \otimes K$. Let A_{ν} be the image $u_{\nu}(B_{\nu})$ and put $H_{\nu} = \operatorname{Spec}(A_{\nu})$. Observe that A_{ν} is a cocommutative Hopf algebra, and therefore H_{ν} is a commutative group scheme.

$$B_{\nu} \otimes_{R} K \longrightarrow A_{\nu} \xrightarrow{\iota} A_{*\nu}$$

$$\uparrow \qquad \uparrow$$

$$B_{\nu+1} \otimes_{R} K \xrightarrow{\sigma} A_{\nu+1} \longrightarrow A_{*\nu+1}$$

By construction ι is injective, while σ is surjective. Hence we obtain a map

$$\begin{array}{cccc} B_{\nu} \otimes_{R} K & \longrightarrow & A_{\nu} & \stackrel{\iota}{\longrightarrow} & A_{*\nu} \\ \uparrow & & \uparrow & & \uparrow \\ B_{\nu+1} \otimes_{R} K & \stackrel{\sigma}{\longrightarrow} & A_{\nu+1} & \longrightarrow & A_{*\nu+1} \end{array}$$

and thus maps $H_{\nu} \to H_{\nu+1}$. Nevertheless, H is not necessarily a p-divisible group. (The last lines of [1] provide an example by Serre, that illustrates this problem.) However, $H \otimes K \cong H_*$ is a p-divisible group. As we will see, the failure of H being a p-divisible group is somehow only at a finite level. What I mean is this: for $\nu \gg 0$ we will see that $H_{\nu} \to H_{\nu+1}$ satisfies the axioms for a p-divisible group. We will exploit this to define Γ in terms of H.

Because all groups involved are finite, quotients such as $H_{\mu+1}/H_{\mu}$ exist. By looking at the generic fibre, we see that $H_{\mu+1}/H_{\mu}$ is killed by p. In particular the map [p] induces maps

$$H_{\mu+\nu+1}/H_{\mu+1} \to H_{\mu+\nu}/H_{\mu}$$

that are isomorphisms on the generic fibre. (After all, on the generic fibre both the source and the target are isomorphic to H_{ν} , and the kernel of the map is 0.) Let D_{μ} be the algebra corresponding to $H_{\mu+1}/H_{\mu}$. By the above observation, the algebra $D_{\mu} \otimes_R K$ does not depend on μ ; and the D_{μ} form an increasing sequence of orders inside a finite separable K-algebra.

From some point onwards, say μ_0 , this sequence stabilises: $D_{\mu} = D_{\mu_0}$ for $\mu \ge \mu_0$. Now we may put $\Gamma_{\nu} = H_{\nu+\mu_0}/H_{\mu_0}$. Note that $[p^{\mu_0}]$ induces maps $\Gamma_{\nu} \to H_{\nu}$ that are isomorphisms on the generic fibre. Hence (if we assume for a moment that Γ is *p*-divisible), it is immediate that $\Gamma \hookrightarrow G$ induces an isomorphism $T(\Gamma) \to W$.

We are done if we show that Γ is *p*-divisible. To see this, consider the following diagram.

$$\begin{array}{c} H_{\nu+\mu_0+1}/H_{\mu_0} \xrightarrow{[p^{\nu}]} H_{\nu+\mu_0+1}/H_{\mu_0} \\ \downarrow^{\alpha} & \uparrow^{\gamma} \\ H_{\nu+\mu_0+1}/H_{\nu+\mu_0} \xrightarrow{\beta} H_{\mu_0+1}/H_{\mu_0} \end{array}$$

· ·/·

Here

- » α is the canonical surjection.
- » β is the map induced by $[p^{\nu}]$, and is an isomorphism by the choice of μ_0 .

» γ is the canonical inclusion.

Observe that both objects in the top row are isomorphic to $\Gamma_{\nu+1}$. We conclude that the kernel of $[p^{\nu}]: \Gamma_{\nu+1} \to \Gamma_{\nu+1}$ is isomorphic to the kernel of α , which is $H_{\nu+\mu_0}/H_{\mu_0}$. By definition this is Γ_{ν} . We conclude that Γ is indeed *p*-divisible.

References

 J. T. Tate. "p-divisible groups". In: Proc. Conf. Local Fields (Driebergen, 1966). Springer, Berlin, 1967, pp. 158–183.