
Liquid Tensor Experiment



Ab is nice



TopAb is ugly



Rδ → R



AbSh(X) is nice



Profinite sets



Condensed sets



CompHaus ↪→ Cond(Set)



Cond(Ab) is nice



Condensed rings/modules



Six functor formalism



Analytic rings



Analytic geometry



Applications



Real analysis



{0.d1d2d3 · · · | di = 0, 1, . . . , 9}



Scholze’s challenge



Some details



Definition

An analytic ring A is a condensed ring A

together with a functor

{extr.disc.} → ModCond
A

S 7→ A[S]

satisfying some conditions.
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“Measures”
Fix p ∈ (0, 1] ⊂ R.

For S finite:

R[S]ℓp≤c =

{
(as)s

∣∣∣∣ ∑
s∈S

‖as‖p ≤ c
}

For S = lim←−i Si profinite:

Mp(S) =
⋃

c
lim←−

i
R[Si]ℓp≤c

M<p(S) = lim−→
p′<p
Mp′(S)
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Main theorem

Fix 0 < p ≤ 1.

Then (R,M<p) is an analytic ring.



Theorem 9.5

Main theorem

Functional analysis

Homological algebra

Z((T))→ R

Condensed mathematics

Categorical reduction steps



Breen–Deligne resolution

Polyhedral lattices

Normed exactness

Chase inequalities through spectral sequences
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