Liquid Tensor Experiment

Ab is nice

TopAb is ugly

$\mathbb{R}^\delta o \mathbb{R}$

AbSh(X) is nice

Profinite sets

Condensed sets

 $\overline{\mathsf{CompHaus}} \hookrightarrow \mathsf{Cond}(\overline{\mathsf{Set}})$

Cond(Ab) is nice

Condensed rings/modules

Six functor formalism

Analytic rings

Analytic geometry

Applications

Real analysis

Scholze's challenge

Some details

Definition

An analytic ring A is a condensed ring A

Definition

An analytic ring A is a condensed ring A

together with a functor

$$\{ extit{extr.disc.}\}
ightarrow \mathsf{Mod}^{\mathsf{Cond}}_{\underline{\mathcal{A}}} \ \mathcal{S} \mapsto \mathcal{A}[\mathcal{S}]$$

Definition

An analytic ring A is a condensed ring A

together with a functor

$$\{ extit{extr.disc.}\}
ightarrow \mathsf{Mod}^{\mathsf{Cond}}_{\underline{\mathcal{A}}} \ \mathcal{S} \mapsto \mathcal{A}[\mathcal{S}]$$

satisfying some conditions.

Fix $\boldsymbol{\rho} \in (0,1] \subset \mathbb{R}$.

Fix
$$p \in (0,1] \subset \mathbb{R}$$
.

For S finite:

$$\mathbb{R}[\mathcal{S}]_{\ell^p \leq c} = \left\{ (a_s)_s \; igg| \; \sum_{s \in \mathcal{S}} \|a_s\|^p \leq c
ight\}$$

Fix $p \in (0,1] \subset \mathbb{R}$.

For *S* finite:

$$\mathbb{R}[\mathcal{S}]_{\ell^p \leq c} = \left\{ (a_s)_s \; igg| \; \sum_{s \in \mathcal{S}} \|a_s\|^p \leq c
ight\}$$

For $S = \underline{\lim}_{i} S_{i}$ profinite:

$$\mathcal{M}_{m{
ho}}(m{\mathcal{S}}) = igcup_{m{c}} arprojlim_{m{i}} \mathbb{R}[m{\mathcal{S}}_{m{i}}]_{\ell^{m{
ho}} \leq m{c}}$$

Fix
$$p \in (0,1] \subset \mathbb{R}$$
.

For *S* finite:

$$\mathbb{R}[\mathcal{S}]_{\ell^p \leq c} = \left\{ (a_s)_s \; igg| \; \sum_{s \in \mathcal{S}} \|a_s\|^p \leq c
ight\}$$

For $S = \underline{\lim}_{i} S_{i}$ profinite:

$$\mathcal{M}_{oldsymbol{
ho}}(\mathcal{S}) = igcup_{c} arprojlim_{i} \mathbb{R}[\mathcal{S}_{i}]_{\ell^{p} \leq c}$$

$$\mathcal{M}_{<
ho}(\mathcal{S}) = arprojlim_{oldsymbol{p}'$$

Main theorem

Fix 0 .

Then $(\mathbb{R}, \mathcal{M}_{\leq p})$ is an analytic ring.

Functional analysis Homological algebra

Theorem 9.5

 $\mathbb{Z}((T)) o\mathbb{R}$ Condensed mathematics Categorical reduction steps

Main theorem

Breen-Deligne resolution

Breen-Deligne resolution
Polyhedral lattices

Breen-Deligne resolution

Polyhedral lattices

Normed exactness

Chase inequalities through spectral sequences

. . .

Breen-Deligne resolution

Normed exactness

Polyhedral lattices

Joint work with

▶ Peter Scholze

The Lean community

- ▶ Damiano Testa
- ▶ Patrick Massot
- ► Kevin Buzzard
- ► Riccardo Brasca
- ► Adam Topaz
- ► Scott Morrison