A LIQUID EXAMPLE COMPUTATION

JOHAN COMMELIN

0.1. These examples were sketched to me by Peter Scholze. All ideas are due to
him; all errors are mine. I thank Scholze for all his patient explanations.

0.2. Below, we will be looking at three observations concerning liquid vector spaces.
(i) We show that
o: 08— 120"
(@n)n > (2 log [2n])n

is a linear map of liquid vector spaces.

(i) We use this to show that (R, M;) is not an analytic ring.

(#i) The linear map given above is weird, because of the log-factor. But it
cannot get much weirder: having factors x¢, for ¢ > 1, leads to genuinely
non-linear maps.

0.3. Fix p € R.g. Recall that /7 = ¢?(N) denotes the subspace of sequences

{(an)nen € RN } Z |a,|? < oo}

In particular, ¢! consists of sequences whose series is absolutely convergent, and ¢2
is the space of square-summable sequences.

The definition is commonly extended to p = oo, so that £*° denotes the subspace
of bounded sequences

{(@n)nce € B | sup o] < o0}
n
Note that for p < p’ < oo, there is an inclusion 7 C I

0.4. The spaces (P are real vector spaces, naturally equipped with a norm. For
p < 00, this norm is given by

l(an)ulls = (Z \an\p)

For p = 0o, we take the sup-norm. This norm makes /7 into a Banach space when

p>1
1
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Recall that Banach spaces are M-complete condensed R-vector spaces |1, Lect. I11],
and hence p’-liquid real vector spaces |1, Lect. VI|, for any 0 < p’ < 1. As such, (7
is p’-liquid. We will omit p’ below and simply speak of liquid vector spaces.

0.5. One of the central protagonists in this example is the following function:

R

(@n)n — (znlog|zn|)s
(If, as the author, one is not well-versed in basic calculus, then it is a good exercise
to check that this function indeed lands in ¢2.)

Clearly, this is not a linear map. But its composition with the natural projection
0% — (*/0" is linear! We will check this below.

0.6. Note that ¢2/¢" is a perfectly fine liquid vector space, albeit non-separated. It
is crucial to remember that this quotient is taken in the condensed sense. In other
words, ¢2/¢' is the sheaf S +— ¢2(S)/¢1(S), where (P(S) is the group of continuous
maps S — (P, for any profinite set 5.

(It turns out that sheafification is not necessary, since ¢! is a Banach space. Indeed,
|1, Prop. 8.19] shows H'(S,V) = 0 for all profinite S and Banach spaces V.)

0.7. Let us now check the linearity of the map ¢, claimed above. Fix z,y € ¢, and
recall that
(@ +y) = o) = @(Y))n = (&0 + yn) l0g |20 + Yn| — znlog 20| — ynlog |yal.
In general, for a,b € R we have
(@ +b)log|a + b — alog|a| — blog [b]| < 2log(2)(|a| + [b]),
see |1, Lem. 5.3]. Hence

Y (@lz+y) = 3(x) = y)a < Y 21og(2)(|@n] + [yal),

n

which shows that @(z+y) — o(x) — @(y) € £, and therefore ¢ is additive. Similarly,
one may check ¢ preserves scalar multiplication. This shows that indeed

o: 08— 2)0"
(Tp)n —> (zp log |Ta])n
is a linear map.
0.8. For sake of completeness, observe that ¢ is not identically 0 either. For example,

take x € (! given by

-1
xn:W fOI'TLZl, .TOIO,
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so that
oo, | - 1oz
" " nlog |n|3/2
1 loglloglnl
~ nlog|n|'/?2 " nlog|n[3/?
1

~ nlog |n|V/2

Since the series ) W diverges, we see that x is not in ker ¢.

0.9. For the computation below, we will denote by e; € P the i-th standard basis

vector, defined by
1 ifn=1
(ei)n - 5n,i - e !
0 ifn#i.

0.10. Let S denote the profinite set N U {co}. Every converging sequence (z,),
in some M-complete vector space V induces a map S — V, and hence a map
M (S) — V. See [1, Lect. III] for details.

0.11. Consider any null sequence (), of real numbers. This induces a null
sequence in ¢!, namely (a,e,),. Under the map ¢ studied above, this null sequence
is mapped identically to 0 € £2/¢".

Now consider the map f: M;(S) — ¢! induced by the null sequence (apep)n.
Additionally, consider the image of ¢ o f, which is a subspace of ¢2//'.

0.12. We will now show that (R, M) is not an analytic ring. If it were so, then
the image of ¢ o f would have to be identically 0, since ¢ o f would then be the
canonical map M;(S) — ¢?/¢" induced by the zero sequence S — (2 /(.

But this is not what happens. Indeed, pick any y = (y,), € M;(S) with

Y lun| < 0o, Then f(y) = (@nyn)n, and

e(f(Y) = anyn log [anynl-
By picking
_ —1 B 1
" log(n)/4’ Yn = nlog(n)®/4
we see that f(y) is exactly the example described in showing ¢(f(y)) # 0.

Conclusion: (R, M) is not an analytic ring.

«

0.13. We will now perform the same computation, but with the analytic ring
(R, M), and see what it teaches us.
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Therefore, let ¢: R — R be a function such that
Vi 0t — ()01

(Tn)n > (U(70))n

is a linear map of liquid vector spaces. And as before, let (), be a null sequence
of real numbers, which induces a map f: M(S) — £%.

0.14. Clearly % vanishes on aye,. Since (R, M) is an analytic ring, we see that
the image of v o f is trivial.

Let y = (yn)n € M1(S) be any p-summable sequence, for some p < 1. In other
words, Y |y,|P < 0o. Since ¥(f(y)) = 0, we find that

WO W)n)n = (W(anyn))n
is in /1.
If ¢ grows asymptotically faster than z¢, for some ¢ > 1, than we can find (),
p < 1and (y,)n € M,(S) such that 3 t(a,y,) diverges. We conclude that )
must be O(z¢) for all ¢ > 1.

0.15. Observe that in this current situation, the explicit values of «, and y,
that were picked in are ruled out. The sequence y,, = (nlog(n)®*)~! is not
p-summable for any p < 1.

0.16. Peter Scholze further pointed out that all the computations above can also be

done for the pre-analytic rings (Z[T], M(_,Z((T)),)) and (Z[T |, M(_,Z((T))r)).

The latter is analytic, but the former is not. In this context the role of x +— z log |z|
is played by the derivative Y a,T" — > na,T" .
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