
A LIQUID EXAMPLE COMPUTATION

JOHAN COMMELIN

0.1. These examples were sketched to me by Peter Scholze. All ideas are due to
him; all errors are mine. I thank Scholze for all his patient explanations.

0.2. Below, we will be looking at three observations concerning liquid vector spaces.
(i) We show that

ϕ : `1 −→ `2/`1

(xn)n 7−→ (xn log |xn|)n
is a linear map of liquid vector spaces.

(ii) We use this to show that (R,M1) is not an analytic ring.
(iii) The linear map given above is weird, because of the log-factor. But it

cannot get much weirder: having factors xc, for c > 1, leads to genuinely
non-linear maps.

0.3. Fix p ∈ R>0. Recall that `p = `p(N) denotes the subspace of sequences{
(an)n∈N ∈ RN ∣∣∑

n

|an|p <∞
}
.

In particular, `1 consists of sequences whose series is absolutely convergent, and `2

is the space of square-summable sequences.
The definition is commonly extended to p =∞, so that `∞ denotes the subspace

of bounded sequences {
(an)n∈N ∈ RN ∣∣ sup

n
|an| <∞

}
.

Note that for p ≤ p′ ≤ ∞, there is an inclusion `p ⊆ `p
′ .

0.4. The spaces `p are real vector spaces, naturally equipped with a norm. For
p <∞, this norm is given by

‖(an)n‖p =
(∑

n

|an|p
)1/p

.

For p =∞, we take the sup-norm. This norm makes `p into a Banach space when
p ≥ 1.
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Recall that Banach spaces areM-complete condensed R-vector spaces [1, Lect. III],
and hence p′-liquid real vector spaces [1, Lect. VI], for any 0 < p′ ≤ 1. As such, `p

is p′-liquid. We will omit p′ below and simply speak of liquid vector spaces.

0.5. One of the central protagonists in this example is the following function:

ϕ̃ : `1 −→ `2

(xn)n 7−→ (xn log |xn|)n
(If, as the author, one is not well-versed in basic calculus, then it is a good exercise
to check that this function indeed lands in `2.)

Clearly, this is not a linear map. But its composition with the natural projection
`2 → `2/`1 is linear! We will check this below.

0.6. Note that `2/`1 is a perfectly fine liquid vector space, albeit non-separated. It
is crucial to remember that this quotient is taken in the condensed sense. In other
words, `2/`1 is the sheaf S 7→ `2(S)/`1(S), where `p(S) is the group of continuous
maps S → `p, for any profinite set S.

(It turns out that sheafification is not necessary, since `1 is a Banach space. Indeed,
[1, Prop. 8.19] shows H1(S, V ) = 0 for all profinite S and Banach spaces V .)

0.7. Let us now check the linearity of the map ϕ, claimed above. Fix x, y ∈ `1, and
recall that

(ϕ̃(x+ y)− ϕ̃(x)− ϕ̃(y))n = (xn + yn) log |xn + yn| − xn log |xn| − yn log |yn|.

In general, for a, b ∈ R we have

|(a+ b) log |a+ b| − a log |a| − b log |b|| ≤ 2 log(2)(|a|+ |b|),

see [1, Lem. 5.3]. Hence∑
n

(ϕ̃(x+ y)− ϕ̃(x)− ϕ̃(y))n ≤
∑
n

2 log(2)(|xn|+ |yn|),

which shows that ϕ̃(x+y)− ϕ̃(x)− ϕ̃(y) ∈ `1, and therefore ϕ is additive. Similarly,
one may check ϕ preserves scalar multiplication. This shows that indeed

ϕ : `1 −→ `2/`1

(xn)n 7−→ (xn log |xn|)n
is a linear map.

0.8. For sake of completeness, observe that ϕ is not identically 0 either. For example,
take x ∈ `1 given by

xn =
−1

n log |n|3/2
for n ≥ 1, x0 = 0,
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so that

xn log |xn| =
log |n log |n|3/2|
n log |n|3/2

=
1

n log |n|1/2
+

log |log |n||
n log |n|3/2

≥ 1

n log |n|1/2
.

Since the series
∑

n
1

n log |n|1/2 diverges, we see that x is not in kerϕ.

0.9. For the computation below, we will denote by ei ∈ `p the i-th standard basis
vector, defined by

(ei)n = δn,i =

{
1 if n = i

0 if n 6= i.

0.10. Let S denote the profinite set N ∪ {∞}. Every converging sequence (xn)n
in some M-complete vector space V induces a map S → V , and hence a map
M1(S)→ V . See [1, Lect. III] for details.

0.11. Consider any null sequence (αn)n of real numbers. This induces a null
sequence in `1, namely (αnen)n. Under the map ϕ studied above, this null sequence
is mapped identically to 0 ∈ `2/`1.

Now consider the map f :M1(S) → `1 induced by the null sequence (αnen)n.
Additionally, consider the image of ϕ ◦ f , which is a subspace of `2/`1.

0.12. We will now show that (R,M1) is not an analytic ring. If it were so, then
the image of ϕ ◦ f would have to be identically 0, since ϕ ◦ f would then be the
canonical mapM1(S)→ `2/`1 induced by the zero sequence S → `2/`1.

But this is not what happens. Indeed, pick any y = (yn)n ∈ M1(S) with∑
n |yn| <∞. Then f(y) = (αnyn)n, and

ϕ(f(y)) = αnyn log |αnyn|.

By picking

αn =
−1

log(n)1/4
, yn =

1

n log(n)5/4

we see that f(y) is exactly the example described in 0.8, showing ϕ(f(y)) 6= 0.
Conclusion: (R,M1) is not an analytic ring.

0.13. We will now perform the same computation, but with the analytic ring
(R,M<1), and see what it teaches us.
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Therefore, let ψ̃ : R→ R be a function such that

ψ : `1 −→ `∞/`1

(xn)n 7−→ (ψ̃(xn))n

is a linear map of liquid vector spaces. And as before, let (αn)n be a null sequence
of real numbers, which induces a map f :M<1(S)→ `1.

0.14. Clearly ψ vanishes on αnen. Since (R,M<1) is an analytic ring, we see that
the image of ψ ◦ f is trivial.

Let y = (yn)n ∈M<1(S) be any p-summable sequence, for some p < 1. In other
words,

∑
n |yn|p <∞. Since ψ(f(y)) = 0, we find that

(ψ̃(f(y)n)n = (ψ̃(αnyn))n

is in `1.
If ψ̃ grows asymptotically faster than xc, for some c′ > 1, than we can find (αn)n,

p < 1 and (yn)n ∈ Mp(S) such that
∑

n ψ̃(αnyn) diverges. We conclude that ψ̃
must be O(xc) for all c > 1.

0.15. Observe that in this current situation, the explicit values of αn and yn
that were picked in 0.12 are ruled out. The sequence yn = (n log(n)5/4)−1 is not
p-summable for any p < 1.

0.16. Peter Scholze further pointed out that all the computations above can also be
done for the pre-analytic rings (Z[T−1],M(_,Z((T ))r)) and (Z[T−1],M(_,Z((T ))>r)).
The latter is analytic, but the former is not. In this context the role of x 7→ x log |x|
is played by the derivative

∑
n anT

n 7→
∑
nanT

n−1.

References

[1] P. Scholze. “Lectures on Analytic Geometry”. 2020.


	References

