Finite group schemes

Johan M. Commelin

October 27, 2014

Contents

1 References .. 1

2 Examples .. 2
 2.1 Examples we have seen before 2
 2.2 Constant group schemes 3
 2.3 Kernel of a homomorphism of group schemes 3
 2.4 Multiplication by n 4
 2.5 Semidirect product of group schemes 4

3 Étale schemes over fields 4
 3.1 Étale morphisms ... 4
 3.2 Étale group schemes over fields 5

4 Standard constructions 6
 4.1 Connected component of the identity 6
 4.2 Component scheme 7
 4.2.1 Component group 7
 4.3 Reduced group scheme 8

5 Characteristic 0 group schemes are smooth 8

6 Cartier duality for finite commutative group schemes 8
 6.1 Hopf algebras ... 9

7 Exercises .. 10

1 References

- The main reference is §3 of the manuscript of Moonen and his coauthors.
- For some useful facts on connected (resp. reduced) schemes, see EGA IV.
- If you are hardcore, the most general version of any statement about group schemes can be found in SGA3.
2 Examples

2.1 Examples we have seen before

Let S be a scheme. We recall some examples of group schemes you have already seen.

- The group scheme \mathbb{G}_a_S is defined by the functor

$$\mathbb{G}_a_S: \text{Sch}^{\text{op}}_{/S} \to \text{Grp}$$

$$T \mapsto (\mathcal{O}_T(T), +)$$

It is represented by the scheme $\mathbb{A}^1_S = \text{Spec}(\mathbb{Z}[X]) \times S$. If S is affine, say $\text{Spec}(A)$, then $\mathbb{G}_a_S \cong \text{Spec}(A[X])$.

- The group scheme \mathbb{G}_m_S is defined by the functor

$$\mathbb{G}_m_S: \text{Sch}^{\text{op}}_{/S} \to \text{Grp}$$

$$T \mapsto \mathcal{O}_T(T)^*$$

It is represented by the scheme $\mathbb{G}_m_S = \mathbb{Z} \times S = \text{Spec}(\mathbb{Z}[X, X^{-1}]) \times S$. If S is affine, say $\text{Spec}(A)$, then $\mathbb{G}_m_S \cong \text{Spec}(A[X, X^{-1}])$.

If $S' \to S$ is a morphism of schemes, then $\mathbb{G}_a_S' \cong \mathbb{G}_a_S \times_S S'$ and $\mathbb{G}_m_S' \cong \mathbb{G}_m_S \times_S S'$. This is immediate from the way we gave the representing schemes in the above examples.

These examples naturally lead to the definition of the following subgroup schemes.

- The subgroup scheme $\mu_{n,S} \subset \mathbb{G}_m_S$ is defined by the functor

$$\mu_{n,S}: \text{Sch}^{\text{op}}_{/S} \to \text{Grp}$$

$$T \mapsto \{x \in \mathcal{O}_T(T)^* \mid x^n = 1\}$$

It is represented by $\text{Spec}(\mathbb{Z}[X]/(X^n - 1)) \times S$.

- Assume the characteristic of S is a prime $p > 0$. (In other words, $\mathcal{O}_S(S)$ is a ring of characteristic p or equivalently, $S \to \text{Spec}(\mathbb{Z})$ factors via $\text{Spec}(\mathbb{F}_p)$.)

The subgroup scheme $\alpha_{p^n,S} \subset \mathbb{G}_a_S$ is defined by the functor

$$\alpha_{p^n,S}: \text{Sch}^{\text{op}}_{/S} \to \text{Grp}$$

$$T \mapsto \{x \in \mathcal{O}_T(T)^* \mid x^{p^n} = 0\}$$

It is represented by $\text{Spec}(\mathbb{Z}[X]/(X^p)) \times S$.

In a moment we will see that $\mu_{n,S}$ and $\alpha_{p^n,S}$ are examples of kernels.

Example 1 Observe that if we forget the group structures, then $\mu_{p^n,S}$ and $\alpha_{p^n,S}$ represent the same functor. Indeed, they are fibres of the same homomorphism of rings. However, as group schemes they are not isomorphic.
2.2 Constant group schemes

Let G be an abstract group. We associate a group scheme with G, the so called constant group scheme G_S. It is defined by the functor

$$G_S: \text{Sch}_S^{\text{op}} \rightarrow \text{Grp}$$

$$T \mapsto \mathbb{G}_{\text{m}}(T)$$

It is represented by $\coprod_{g \in G} S$. Indeed, if T is connected,

$$\text{Hom}_S(T, \coprod_{g \in G} S) = G_S(T)$$

because T must be mapped to exactly one copy of S, and the mapping must be the structure morphism $T \rightarrow S$. For general T, the identity follows from abstract nonsense:

$$\text{Hom}(\coprod_{i \in I} T_i, X) = \prod_{i \in I} \text{Hom}(T_i, X)$$

Example 2 Let k be a field of characteristic p. Let n be an integer that is not divisible by p. In general $(\mathbb{Z}/n\mathbb{Z})_k$ and $\mu_{n,k}$ are not isomorphic. However, if k contains a primitive n-th root of unity (for example if k is algebraically closed), then $(\mathbb{Z}/n\mathbb{Z})_k \cong \mu_{n,k}$.

We say that μ_n is a form of the constant group scheme $(\mathbb{Z}/n\mathbb{Z})_k$. Later on we hope to see that, if k is a field of characteristic 0, then every finite group scheme over k is a form of a constant group scheme. Moreover, if k is algebraically closed, then every finite group scheme is constant.

2.3 Kernel of a homomorphism of group schemes

Let $f: G \rightarrow H$ be a homomorphism of group schemes over some scheme S. The kernel subgroup scheme $\text{Ker}(f) \subset G$ is defined via the functor

$$\text{Ker}(f): \text{Sch}_S^{\text{op}} \rightarrow \text{Grp}$$

$$T \mapsto \text{Ker}(G(T) \rightarrow H(T))$$

This functor is representable, because it is a pullback

$$\begin{array}{ccc}
S & \longrightarrow & H \\
\downarrow & & \downarrow f \\
\text{Ker}(f) & \longrightarrow & G \\
\end{array}$$

Note that μ_n is the kernel

$$[n]: \mathbb{G}_{\text{m}} \rightarrow \mathbb{G}_{\text{m}}$$

$$x \mapsto x^n$$

and similarly α_{p^n} is the kernel of Frobenius

$$\text{Frob}_p: \mathbb{G}_{\text{a}} \rightarrow \mathbb{G}_{\text{a}}$$

$$x \mapsto x^{p^n}$$
2.4 Multiplication by \(n \)

Let \(S \) be a scheme. Let \(G/S \) be a commutative group scheme over \(S \). For every non-negative integer \(n \in \mathbb{Z}_{\geq 0} \) there is a group scheme homomorphism “multiplication by \(n \)” given by

\[
[n]: G \rightarrow G \\
x \mapsto n \cdot x
\]

(Here we use additive notation for \(G \).)

The kernel of this morphism is usually denoted \(G[n] \).

Note that we can define \(\mu_n \) as \(G_{\text{m}}[n] \).

2.5 Semidirect product of group schemes

Let \(N \) and \(Q \) be two group schemes over a basis \(S \). Let

\[
\text{Aut}(N): \text{Sch}^{\text{op}}_S \rightarrow \text{Grp} \\
T \mapsto \text{Aut}(N_T)
\]

denote the automorphism functor of \(N \). (By the way, with \(\text{Aut}(N_T) \) we mean automorphisms of \(N_T \) as group scheme!) Let \(\rho: Q \rightarrow \text{Aut}(N) \) be an action of \(Q \) on \(N \).

The semi-direct product group scheme \(N \rtimes_\rho Q \) is defined by the functor

\[
N \rtimes_\rho Q: \text{Sch}^{\text{op}}_S \rightarrow \text{Grp} \\
T \mapsto N(T) \rtimes_{\rho_T} Q(T)
\]

which is represented by \(N \times_S Q \). Recall that if \((n, q)\) and \((n', q')\) are \(T \)-valued points of \(N \rtimes_\rho Q \), then

\[
(n, q) \cdot (n', q') = (n \cdot \rho(q)(n'), q \cdot q').
\]

3 Étale schemes over fields

3.1 Étale morphisms

We now give two definition of étale morphisms; but we do not show that they are equivalent.

Definition 1 A morphism of schemes \(X \rightarrow S \) is étale if it is flat and unramified.

Observe that

- \(X \rightarrow \text{Spec}(k) \) is always flat (trivial);
- \(X \rightarrow \text{Spec}(k) \) is unramified if it is locally of finite type and if for all \(x \in X \) the ring map \(k \rightarrow \mathcal{O}_{X,x} \) is a finite separable field extension.

Definition 2 A morphism of schemes \(X \rightarrow S \) is formally étale if for every

- commutative ring \(A \),
- and every ideal \(I \subset A \), such that \(I^2 = 0 \),
and every commutative square

\[
\begin{array}{ccc}
\text{Spec}(A/I) & \longrightarrow & X \\
\downarrow & & \downarrow \\
\text{Spec}(A) & \longrightarrow & S
\end{array}
\]

there exists precisely one map \(\text{Spec}(A) \to X \) such that

\[
\begin{array}{ccc}
\text{Spec}(A/I) & \longrightarrow & X \\
\downarrow & & \downarrow \\
\text{Spec}(A) & \longrightarrow & S
\end{array}
\]

commutes.

Proposition 1 A morphism of schemes \(X \to S \) is étale if and only if it is locally of finite presentation and formally étale.

Example 3 In other words, a group scheme \(G/k \) over a field \(k \) is étale if for every \(k \)-algebra \(A \), and every ideal \(I \subset A \) with \(I^2 = 0 \), the map \(G(A) \to G(A/I) \) is a bijection.

We now specialise to the case \(S = \text{Spec}(k) \), with \(k \) a field. Fix a separable closure \(\bar{k} \) of \(k \).

Theorem 1 The functor

\[\{ \text{ét. sch. over } k \} \longrightarrow \{ \text{disc. ctu. Gal(\bar{k}/k)-sets} \} \]

\[X \longmapsto X(\bar{k}) \]

is an equivalence of categories.

Proof Every discrete \(\text{Gal}(\bar{k}/k) \)-set is a disjoint union of orbits. Every orbit is stabilised by a finite index subgroup \(H \subset \text{Gal}(\bar{k}/k) \). The orbit corresponds to \(\text{Spec}(\bar{k}^H) \).

Conversely, every étale scheme over \(k \) is the disjoint union of its connected components; and every connected étale scheme over \(k \) is a field extension.

3.2 Étale group schemes over fields

The theorem allows us to describe étale group schemes over \(k \) as group objects in the category of discrete \(\text{Gal}(\bar{k}/k) \)-sets. In other words, a étale group scheme \(G/k \) is fully described by

- the group \(G(\bar{k}) \), together with
- the action of \(\text{Gal}(\bar{k}/k) \) on \(G(\bar{k}) \).

Vice versa, every group discrete \(G \) together with a continuous action of \(\text{Gal}(\bar{k}/k) \) acting via automorphisms of \(G \) (or equivalently, such that the multiplication \(G \times G \to G \) is Galois equivariant) determines a étale group scheme over \(k \).
4 Standard constructions

Let \(G \) be a finite (hence affine) \(k \)-group scheme. By the rank of \(G \) we mean the \(k \)-dimension of its affine algebra \(\mathcal{O}_G(G) \). For example, \(\mu_{p,k}, \alpha_{p,k} \) and \((\mathbb{Z}/p\mathbb{Z})_k \) all have rank \(p \).

4.1 Connected component of the identity

Let \(G/k \) be a group scheme over some field \(k \). Let \(G^0 \) denote the connected component of \(G \) that contains \(e \). One expects that \(G^0 \) is a subgroup scheme of \(G \). This is indeed true. One needs to prove that the image of \(G^0 \times_k G^0 \subseteq G \times_k G \) under the multiplication map \(m: G \times_k G \to G \) is contained in \(G^0 \).

We are done if \(G^0 \times_k G^0 \) is connected.

In general, if \(X \to S \) and \(Y \to S \) are \(S \)-schemes, and \(X \) and \(Y \) are connected, then \(X \times_S Y \) need not be connected. For example take \(\mathbb{C}/\mathbb{R} \) for \(X/S \) and \(Y/S \).

However, we have a rational point \(e \in G^0(k) \) at our disposal.

Lemma 1 Let \(X/k \) be a \(k \)-scheme that is locally of finite type. Assume \(X \) is connected and has a rational point \(x \in X(k) \). Then \(X \) is geometrically connected.

Proof Let \(L/k \) be a field extension. It suffices to show that the projection \(p: X_L \to X \) is open and closed. The properties of being open and closed are local on the target. In other words, if \((U_i)_{i \in I} \) is an affine cover of \(X \), then \((p^{-1}(U_i))_{i \in I} \) covers \(X_L \), and if every \(p^{-1}(U_i) \to U_i \) is open and closed, then so is \(p \).

Hence we may assume that \(X \) is affine and of finite type. Let \(Z \subseteq X \) be closed. Then there exists a field \(K \), with \(k \subseteq K \subseteq L \), and \(K/k \) finite, such that \(Z \) is defined over \(K \). Concretely, there exists a \(Z' \subseteq X_K \), such that \((Z')_L = Z \).

Thus, for every closed (and therefore, for every open) subset of \(X \) we have reduced the question to whether \(X_K \to X \) is open and closed for finite extension \(K/k \). But \(K/k \) is finite and flat, hence so is \(X_K \to X \). But finite flat morphisms are open and closed (use HAG, Chap. III, Ex. 9.1 or EGA IV, Thm. 2.4.6.).

The lemma shows that \(G^0 \) is geometrically connected. This implies that \((G^0)_K = (G_K)^0 \) for every field extension \(K/k \).

Moreover, \(G^0 \times_k G^0 \) is connected, by \url{http://stacks.math.columbia.edu/tag/0385}. It follows that \(G^0 \) carries a subgroup scheme structure.

Together, we have proved parts of the following theorem.

Theorem 2 (Parts of proposition 3.17 from the manuscript) Let \(G \) be a group scheme, locally of finite type over a field \(k \).

(i) The identity component \(G^0 \) is an open and closed subgroup scheme of \(G \) that is geometrically irreducible. In particular: for any field extension \(k \subset K \), we have \((G^0)_K = (G_K)^0 \).

(ii) The following properties are equivalent:

(a1) \(G \times_k K \) is reduced for some perfect field \(K \) containing \(k \);
(a2) the ring \(\mathcal{O}_{G,e} \otimes_k K \) is reduced for some perfect field \(K \) containing \(k \);
(b1) \(G \) is smooth over \(k \);
(b2) \(G^0 \) is smooth over \(k \);
(b3) G is smooth over k at the origin.

Proof The lemma gives us most of (i). The flavour for most of (ii) can be grabbed from http://stacks.math.columbia.edu/tag/04QM. Indeed (a1) ⇒ (a2) and (b1) ⇒ (b2) ⇒ (b3) are trivial.

Example 4 (i) Let k be a non-perfect field. Let α ∈ k be an element that is not a p-th power. Observe that $G = \text{Spec}(k[X,Y]/(X^p + αY^p))$ is a closed subgroup scheme of A^2_k. It is reduced, but not geometrically reduced, hence not smooth. (ii) Consider μ_n, Q, for $n > 2$. The connected component of the identity is geometrically irreducible (as the theorem says) but all other components split into more components after extending to \overline{Q}.

4.2 Component scheme

Let k be a field. Let X/k be a scheme, locally of finite type.

The inclusion functor

$\{\text{ét k-schemes}\} \rightarrow \{\text{loc. fin. type Sch}_k\}$

admits a left adjoint

$\varpi_0: \{\text{loc. fin. type Sch}_k\} \rightarrow \{\text{ét k-schemes}\}$

In other words, every morphism $X \rightarrow Y$ of k-schemes, with Y/k étale, factors uniquely via $X \rightarrow \varpi_0(X)$.

To understand what $\varpi_0(X)$ is, we use our description of étale k-schemes.

Fix a separable closure \overline{k}/k. Observe that $\text{Gal}(\overline{k}/k)$ acts on $\text{Spec}(k)$, hence on, $X_{\overline{k}} = X \times_k \text{Spec}(k)$, hence on the topological space underlying X_k, hence on $\pi_0(X_{\overline{k}})$.

The claim is then, that this action is continuous. Indeed, every connected component $C \in \pi_0(X_{\overline{k}})$ is defined over some finite extension $k' \subset \overline{k}$ of k, and therefore the stabiliser of C contains the open subgroup $\text{Gal}(\overline{k}/k')$. (See the manuscript §3.27 for details.) The étale k-scheme associated with this action is $\varpi_0(X)$.

This shows that ϖ_0 is a functor, as claimed. It is the identity on étale k-schemes. Consequently, every map $X \rightarrow Y$ to an étale scheme induces a map $\varpi_0(X) \rightarrow Y$.

There is an obvious map $X_k \rightarrow \varpi_0(X_k)$. This map is $\text{Gal}(\overline{k}/k)$-equivariant, and therefore we get a map $X \rightarrow \varpi_0(X)$. The fibers of this map are precisely the connected components of X (as open subschemes of X).

4.2.1 Component group

Let G/k be a group scheme, locally of finite type. Since $G^0 \subset G$ is a normal subgroup scheme, there is a natural group scheme structure on $\varpi_0(G)$. In particular we get the following short exact sequence of group schemes.

$1 \rightarrow G^0 \rightarrow G \rightarrow \varpi_0(G) \rightarrow 1$
4.3 Reduced group scheme

Let k be a field. Let G/k be a group scheme. Let G_{red} be the underlying reduced scheme of G.

It is natural to ask if G_{red} is carries a natural group scheme structure over k. In general the answer is no.

However, if we assume k is perfect, the answer is yes. Since G_{red} is reduced, it is smooth (the theorem on connected components), and therefore geometrically reduced (again the theorem). By EGA IV 4.6.1, this implies that $G_{\text{red}} \times_k G_{\text{red}}$ is reduced, and therefore is mapped to G_{red} under the multiplication map $G \times_k G \to G$.

In general $G_{\text{red}} \subset G$ is not normal! See exercise 3.2 from the manuscript. For more information about (possibly) surprising behaviour, one can take a look at http://mathoverflow.net/questions/38891/is-there-a-connected-k-group-scheme-g-such-that-g-red-is-not-a-subgroup and the following example by Laurent Moret-Bailly:

Over a field of characteristic $p > 0$, take for G the semidirect product $\alpha_p \rtimes \mathbb{G}_m$ where \mathbb{G}_m acts on α_p by scaling. Then G is connected but $G_{\text{red}} = \{0\} \times \mathbb{G}_m$ is not normal in G.

Example copied from: http://mathoverflow.net/questions/161604/is-g-operatornamered-normal-in-g?rq=1

5 Characteristic 0 group schemes are smooth

Let k be a field of characteristic 0. Let G/k be a group scheme that is locally of finite type.

Theorem 3 G is reduced, hence G/k is smooth.

Proof See Theorem 3.20 of the manuscript for a proof.

This result has some nice consequences.

- If G/k is finite, then it is étale.
- If G/k if finite, and k is algebraically closed, G/k is a constant group scheme.
- If G/k is finite, then it is a form of a constant group scheme.

6 Cartier duality for finite commutative group schemes

We only present Cartier duality over fields. For a more general picture, see the manuscript §3.21 and further.

Let k be a field. Let G/k be a finite commutative group scheme. To G we can attach the functor

$$G^D: \text{Sch}_{/S}^{\text{op}} \to \text{Grp}$$

$$T \mapsto \text{Hom}_{\text{Grp}_{/S}}(G_T, \mathbb{G}_m_T)$$
If \(G \) is commutative, finite, then \(G^D \) is representable.

To see this, first remark that since \(G \) is finite over \(k \), \(G \) is affine. We can thus study \(G \), by studying its Hopf algebra.

6.1 Hopf algebras

I am not going to discuss Hopf algebras in the generality that mathematical physicists would do.

The category of affine \(k \)-schemes is dual to the category of \(k \)-algebras. Hence a group object in the former corresponds to a cogroup object in the latter.

In particular, for an algebra \(A \) we get the following data

- **unit (algebra structure map)** \(e : k \to A \)
- **multiplication** \(m : A \otimes_k A \to A \)

and if \(A \) is a Hopf algebra, we moreover have

- **co-unit (augmentation map)** \(\tilde{e} : A \to k \)
- **co-multiplication** \(\tilde{m} : A \to A \otimes_k A \)
- **co-inverse** \(\tilde{i} : A \to A \)

I am not going to spell out what it means for \(A \) to be a co-commutative Hopf algebra, but you will just have to dualize all diagrams for group objects.

On \(k \)-algebras, use \((\mathcal{D}) \) as notation for the dualisation functor \(\text{Hom}(_ , k) \).

Lemma 2 Let \(A \) be a co-commutative Hopf algebra over \(k \). The dual data \((A^D, e^D, \tilde{m}^D, e^D, m^D, \tilde{i}^D)\) specifies a co-commutative \(k \)-Hopf algebra.

Proof Draw all the diagrams for a co-commutative Hopf algebra. Reverse all the arrows. Remark that nothing happened, up to a permutation.

We return to the group scheme \(G/k \). Recall that it is commutative and finite. Hence the global sections \(O_G(G) \) form a co-commutative Hopf algebra.

Theorem 4 The Cartier dual \(G^D \) is represented by \(\text{Spec}(A^D) \).

Proof Let \(R \) be any \(k \)-algebra. We have to show that \(G^D(R) \) is naturally isomorphic to \(\text{Hom}_k(\text{Spec}(R), \text{Spec}(A^D)) \).

Observe that

\[
G^D(R) = \text{Hom}_{\text{GrpSch}/k}(G_R, \mathbb{G}_m) \subset \text{Hom}_R(R[x, x^{-1}], A \otimes_k R).
\]

On the other hand,

\[
\text{Hom}_k(\text{Spec}(R), \text{Spec}(A^D)) \cong \text{Hom}_k(A^D, R) \\
\cong \text{Hom}_R(A^D \otimes_k R, R) \\
\cong \text{Hom}_R(A \otimes_k R^D, R).
\]

To make life easier, we now just write \(A \) for the \(R \)-Hopf algebra \(A \otimes_k R \). So we want to prove that \(\text{Hom}_R(A^D, R) \) is canonically isomorphic to the subset of Hopf algebra homomorphisms of \(\text{Hom}_R(R[x, x^{-1}], A) \).

This latter subset is described as follows: A ring homomorphism \(f \) is determined by the image of \(x \). It is a Hopf algebra homomorphism, precisely when \(\tilde{m}(f(x)) = f(x) \otimes f(x) \).
So we get the set \(\{ a \in A^* \mid \tilde{m}(a) = a \otimes a \} \). From the diagrams for Hopf algebras, we see that if \(a \in A \) satisfies \(\tilde{m}(a) = a \otimes a \), then \(\tilde{e}(a) \cdot a = a \), and \(\tilde{i}(a) \cdot a = \tilde{e}(a) \). If \(a \in A^* \), then \(\tilde{e}(a) = 1 \) by the first equation. If on the other hand \(\tilde{i}(a) = 1 \), then the second equation implies \(a \in A^* \). Therefore

\[
\{ a \in A^* \mid \tilde{m}(a) = a \otimes a \} = \{ a \in A \mid \tilde{m}(a) = a \otimes a \text{ and } \tilde{e}(a) = 1 \}.
\]

Reasoning from the other side, every \(R \)-module homomorphism \(A^D \rightarrow R \) is an evaluation homomorphism

\[
ev_a : A^D \rightarrow R \quad \lambda \mapsto \lambda(a)
\]

If we want \(ev_a \) to be a ring homomorphism, it should satisfy

\[
ev_a(1) = 1, \quad \text{i.e. } ev_a \circ \tilde{e}^D = \text{id}
\]

\[
ev_a(\lambda \mu) = ev_a(\lambda ev_a(\mu)), \quad \text{i.e. } ev_a \circ \tilde{m}^D = ev_a \cdot ev_a.
\]

The first equation is equivalent with \(\tilde{e}(a) = 1 \). Indeed

\[
ev_a(\tilde{e}^D(1_R)) = \tilde{e}(a).
\]

The second equation demands

\[
(\lambda \otimes \mu)(\tilde{m}(a)) = \lambda(a)\mu(a)
\]

This is equivalent with \(\tilde{m}(a) = a \otimes a \), which can be seen by letting \(\lambda \) and \(\mu \) run through a dual basis of \(A \).

Hence we are back at the set

\[
\{ a \in A \mid \tilde{m}(a) = a \otimes a \text{ and } \tilde{e}(a) = 1 \}
\]

which completes the proof.

7 Exercises

(1) Show that \(\mu_n/k \) is unramified if \(n \in k^* \).

(2) Show that \(\mu_n/k \) is formally étale if \(n \in k^* \).

(3) Let \(k \) be a field of characteristic \(p \). Give a \(k \)-algebra \(A \), such that \(\alpha_p(A) \) is not trivial.

(4) Compute \(G^0 \) for \(G = \mu_n/k \) (think about the characteristic of \(k \)).

(5) Compute the Cartier dual of \((\mathbb{Z}/n\mathbb{Z})_k \) for \(n \in k^* \).