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Important. In this entire document N is a non-zero integer.

1 The structure of [N]

Let S be an arbitrary scheme, G/S an S-group scheme and N 6= 0 an integer.
Then there exists an S-morphism “multiplication by N”

[N] : G −→ G

defined by G(T) ·N−→ G(T) for all S-schemes T. (By the Yoneda lemma this
gives a morphism G → G.)

Assume G is commutative, then [N] is a homomorphism. We denote with
G[N] the kernel of [N]. Note that G[N] is again a group scheme over S (by the
Yoneda lemma).

Let E/S be an elliptic curve.

Lemma 1. Assume S = Spec(C). The kernel E[N] is a free Z/NZ-module of rank
2.

Proof. From the theory of elliptic curves over the complex numbers, we know
that E can be viewed (we actually view the analytic space Eh [Hart, b.1]) as a
complex torus C/Λ, where Λ ⊂ C is a lattice Λ = Z⊕ ωZ with =(ω) > 0.
Note that this is all in a non-canonical way.

In Theorem 10 we will show that E[N] is etale over Spec(C). Nevertheless,
from this point of view it is clear that E[N] ∼= 1

N Λ/Λ, which is indeed a free
Z/NZ-module of rank 2. (It has basis (1/N, ω/N).)

We would like to generalize this result over Spec(C) to arbitrary base
schemes.
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Figure 1: Diagram of sketching the idea behind the proof

Theorem 2. Let S be an arbitrary scheme, E/S an elliptic curve and N 6= 0 an
integer. Then the S-homomorphism “multiplication by N”

[N] : E −→ E

is finite locally free of rank N2.

The way we approach to the proof of this theorem is sketched in figure 1.

Lemma 3. Let k be an algebraically closed field. Let S = Spec(k), and X and Y two
proper smooth S-curves. Assume X is irreducible. Let f : X → Y be an S-morphism.
Then f is either finite flat or constant.

Proof. See [Hart, ii.6.8] and [G-W, 14.14].
A sketch: Since X and Y are proper, f is proper. Also f (X) is closed in

Y and proper over S. But also, since X is irreducible, f (X) is irreducible.
Therefore f (X) is a point, or f (X) = Y.

In the second case we obtain an inclusion of function fields K(Y) ⊂ K(X).
Both function fields are finitely generated field extenstions of transcendence
degree 1 over k. Therefore K(X)/K(Y) is a finite algebraic extension.

Now let V = Spec(B) be an affine open of Y, and let A be the integral
closure of B in K(X). Then it can be shown [Hart, i.3.9a] that A is a finite
B-module, and that f−1V = Spec(A). It follows that f is finite.

In [G-W, 14.14] it is shown that consequently f is flat. Let x ∈ X and
y = f (x). Note that OY,y is a field if y is the generic point, or otherwise it is a
dvr.
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Then we have the diagram

OY,y K(Y)

OX,x K(X)

From this we deduce that OX,x is a torsion-free module over the dvr (or field)
OY,y, hence flat. So all stalks are flat, therefore f is flat.

Lemma 4. Let S be a scheme and f : X → Y an S-morphism. If X/S is projective
and Y/S is seperated, then f is projective.

Proof. The structure morphism X → S factors as a closed immersion g via
Pn

S → S for some n. By the universal property of the fibred product, f and g
induce a map h : X → Pn

Y. Since g is the composition of h with a seperated
morphism, and g is a closed immersion, we see that h is a closed immersion.
Hence f is projective.

X

Pn
Y Y

Pn
S S

f
h

g
sep sep

Lemma 5. Let f : X → Y be a morphism of noetherian schemes. If f is proper, and
has finite fibres (i.e., f is quasi-finite), then f is finite.

Proof. See [EGA IV(3), 8.11.1].

Lemma 6. Let f : X → Y be a morphism of locally noetherian schemes that is pro-
jective and affine. Then f is finite.

Proof. Let (Ui)i be an open affine cover of Y. Since f is affine, for all i we know
that f−1(Ui) is affine. Since f is projective, f∗OX is coherent. Thus f∗OX(Ui) =
OX( f−1(Ui)) is a finite OY(Ui)-module. Hence f is finite.

Proposition 7. [Fibrewise criterion for flatness, locally noetherian] Let S be a scheme,
f : X → Y a morphism of S-schemes. Assume

1. S, X and Y are locally noetherian;
2. X is flat over S;
3. For every s ∈ S the morphism fs : Xs → Ys is flat.

Then f is flat.
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Proof. See [Stacks, 33.12.3, 039d].

Lemma 8. Let f : X → Y be a morphism of noetherian schemes. Then f is finite
locally free iff f is finite and flat.

Proof. Clearly, locally free implies flat (since free modules are flat).
For the other implication see [Stacks, 24.43.2, 02kb].
In essence the proof boil down to commutative algebra. Let R be a ring,

and M a finitely presented flat R-module.
Pick any prime p and x1, . . . , xr ∈ M which map to a basis of M⊗R κ(p). By

Nakayama’s Lemma these elements generate Mg for some g ∈ R, g /∈ p. The
corresponding surjection φ : R⊕r

g → Mg has the following two properties: (a)
ker(φ) is a finite Rg-module (see [Stacks, 7.4.2, 055z]) and (b) ker(φ)⊗ κ(p) = 0
by flatness of Mg over Rg. Hence by Nakayama’s lemma again there exists a
g′ ∈ Rg such that ker(φ)g′ = 0. In other words, Mgg′ is free.

Since our schemes are noetherian, finite implies finite presentation.

Proof (Theorem 2). Note that finite locally free is a notion that is local on the
target, and therefore, using the results of Jinbi’s talk we may assume that S
is of the form Spec(Z[a1, a2, a3, a4, a6, 1/∆]) and that E is defined by a Weier-
strass equation. In particular S is noetherian, and E is locally noetherian.

Jinbi has shown that E is projective over S, and since E is separated (since
proper) over S, we see that by Lemma 4 that [N] is also projective.

To see that [N] is affine, let s ∈ S be given, and consider the fibre over
s. In this fibre (which is in the P2

κ(s)) there is a homogeneous polynomial P
of sufficiently high degree such that none of the N-torsion points of the fibre
lie in the zero-locus of P. (Note that if the fibre lies over an infinite field,
then a line will be sufficient.) Therefore, the N-torsion lies in the complement
of this zero-locus, which is affine. Since it is a closed condition for these N-
torsion points to lie in the zero-locus of P, we conclude that there is an open
neighbourhood of s where the condition is satisfied. It follows that [N] is
affine.

Now Lemma 6 shows that [N] is finite.
We now want to show that [N] has flat fibres. Therefore, let s ∈ S be

a point, and consider [N]s : Es → Es. Since κ(s) → κ(s) is faithful flat, it
suffices to show that [N]s : Es → Es is flat. Observe that we can view [N] as
the composition of multiplication with the prime factors pi of N. By Lemma 3

the [pi]s and [N]s are either constant or flat. If [N]s is constant, then so is one
of the [pi]s. If pi 6= char(κ(s)) it the tangent map is non-constant (we will see
this later) hence [pi]s is non-constant. If pi = char(κ(s)) then pi is unequal to
2 or 3. Since there is (as Jinbi has shown) at least 2-torsion or 3-torsion we see
that [pi]s is non-constant. Hence, by Lemma 3 we see that [N]s is finite flat.
Consequently, all fibres are flat. And since S and E are locally noetherian and
E is flat (since smooth) over S we conclude with Proposition 7 that [N] is flat.

So [N] is finite flat, and therefore Lemma 8 shows that [N] is finite locally
free.

4



Johan Commelin (s0849065, Universiteit Leiden) March 19, 2012

Observe that S is connected, and therefore the rank is constant. As shown
in Lemma 1, the rank is N2 at C-valued points, hence [N] is finite locally free
of rank N2.

2 [N] on commutative group schemes

Let f : G → S be a smooth commutative S-group scheme. We want to study
the multiplication by [N] in this more abstract setting. In particular, we will
prove that [N] is etale if and only if N is invertible in S (i.e., S is a Z[1/N]-
scheme). This can be done in multiple ways. We will take the more categorical
point of view, using the functor of points and the notion of formally etale.
At the end we will state one lemma that indicates what is needed for a more
algebro-geometric proof.

2.1 Categorical approach

First of all we recall that a map is etale if it is formally etale and locally of
finite presentation. Since G/S is smooth, it is also locally of finite presentation
and therefore locally of finite type. Now a cancellation property [G-W, 10.35]
states that [N] is locally of finite presentation.

Therefore, we want to prove that [N] is formally etale if and only if N is
invertible in S.

We do not yet assume that N is invertible in S. This will only be done
in one of the implications in Theorem 10. We will now prepare everything
that is needed to show that G[N] is etale over S. In Theorem 10 we will then
assume that N is invertible, make the final claim, and show that G[N]/S is
etale, which in turn implies that [N] is etale.

Observe that we can view G[N] as the pullback of 0 along [N]. I.e., the
following diagram is cartesian.

G[N] S

G G
[N]

0

Let C be a ring and I ⊂ C an ideal satisfying I2 = 0. Consider the following
diagram

Spec(C/I) G[N]

G

Spec(C) S

g

g

g0
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Here g and g are given, such that the rectangle commutes (as in the definition
of formally etale). We can lift g along G → S since G/S is smooth. However,
this is not unique.

Write V = {g1 ∈ G(C) : g1 = g ∈ G(C/I)} for the set of possible lifts.
Essentialy g0 is a fixed element in V. Observe that for all g1 ∈ V we have
g1 − g0 ∈ H = ker (G(C)→ G(C/I)). So we have V = g0 + H. Observe that
N · g0 = N · g0 = 0 and therefore Ng0 ∈ H.

Now we may view open affine subsets of S and G. Indeed since 0 is an
immersion, it is a closed immersion followed by an open immersion. Therefore
there exist commutative rings A and B, such that Spec(A) ⊂ S and Spec(B) ⊂
G and also 0 is still a section of f . So now assume S = Spec(A) and G ⊃
Spec(B) without loss of generality.

Then, like Jinbi has shown, we can write B = A⊕ J, where J = ker(0#).
Now, for all h ∈ H we have the following diagram.

C/I

B = A⊕ J

C A

f #

g#

h#

Since h = 0 ∈ G(C/I) and since G is a group scheme, we see that h = 0 ◦ g. As

J = ker(0#) it follows that h
#

maps J to 0 ∈ C/I. This shows that J is mapped
into I by h#. Also, since I2 = 0, J2 maps to 0. Thus h# induces a map J/J2 → I.
Hence we have a map from H to HomA(J/J2, I) = DerA(B, I). This map is
explicitly given by

H → DerA(B, I)

h 7→
(

b 7→ h#(b)− g#(b(0))
)

.

We note that this map is a bijection, since the inverse is given by(
b 7→ d(b) + g#(b(0))

)∗
← [ d.

Now we have a bijection between two sets, that both have a group struc-
ture: H gets its group structure from G, and DerA(B, I) is an A-module. We
want to show that our given bijection is a group homomorphism. Therefore
we prove that our construction is functorial in G.

Lemma 9. Let A, C and I be as in the text above. Let X1 and X2 be A-schemes.
Let φ : X1 → X2 be an A-morphism. Let p ∈ X1(C) be a point. Then there exists
a tangent map T′f ,p : DerA(B1, I) → DerA(B2, I). (Here we implicitly assume Xi =

Spec(Bi) for some rings Bi.)
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Proof. Similar to the way above we can assume Xi = Spec(Bi), and obtain
A-modules DerA(Bi, I). Indeed there exists a map

T′f ,p : DerA(B1, I)→ DerA(B2, I)

d 7→ d ◦ f #.

It is left as an exercise to prove that this is actually functorial.

By the universal property of the fibred product we have (X1 ×S X2)(C) =
X1(C) ×S(C) X2(C), which shows that the tangent functor commutes with
products. Now consider the diagrams

G

G×S G G

(id, e)
id

+G

DerA(B, I)

DerA(B, I)×A DerA(B, I) DerA(B, I)

(id, 0)
id

It follows that T′+G ,g(X, 0) = X and a similar argument shows that (0, Y) is
mapped to Y. Since the tangent map is an A-module homomorphism, we
conclude that T′+G ,g is the usual addition on DerA(B, I).

Theorem 10. Let S be an arbitrary scheme, G/S a smooth commutative S-group
scheme and N ∈ Z≥1 an integer. If N is invertible in S, then [N] is etale over S.

Proof. We want to show that there exists a unique g1 ∈ V such that N · g1 = 0
since this would mean that g1 ∈ G[N](C) is a unique lift of g. Equivalently,
we want to show that there is a unique h ∈ H such that N(g0 + h) = 0. Recall
that −N · g0 ∈ H. Since H = DerA(B, I) is an A-module and N is invertible in
A, we conclude that such an h exists and is unique. This shows that G[N] is
etale over S.

To show that [N] is etale, again consider a diagram as in the definition of
formally etale.

Spec(C/I) G

Spec(C) G
p

[N]

Now we insert the base change of [N] along p and obtain

Spec(C/I) [N]−1 p G

Spec(C) Spec(C) G

q

id

[N]

p
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Now the right square is defined to be cartesian. It is clear that if we can lift in
the left square, we can extend the lift to the rectangle by composition. Show-
ing that we can indeed lift in the left square can essentially be done by an
argument similar to the one for G[N]. ([N]−1 p→ Spec(C) is a G[N]C-torsor.)

This shows that [N] is formally etale. We had already shown that [N] was
locally of finite presentation. Hence [N] is etale.

Lemma 11. Let S be an arbitrary scheme, G/S a commutative S-group scheme
smooth of positive relative dimension over S and N ∈ Z≥1 an integer. If [N] is
etale over S, then N is invertible in S.

Proof. Assume that N is not invertible in S. Then there exists an s ∈ S such that
the characteristic of κ(s) divides N. Therefore in the fibre over s we see that
[N] is the zero-map, while the dimension is not 0. Hence [N] is not etale.

2.2 Sketch of an algebro-geometric approach

As promised, we would also give a hint of what would go into a more algebro-
geometric proof of proving Theorem 10. The crucial ingredient is the following
lemma.

Lemma 12. Let f : X → Y be a morphism of schemes. Then f is smooth of relative
dimension d if and only if

• f is locally of finite presentation;
• f is flat;
• the geometric fibres are smooth of dimension d.

Proof. See [Stacks, 24.32.14, 01v9]. And also the paragraph above it.

Since the first two conditions are clearly satisfied by [N] (see the proof of
Theorem 2) it suffices to show that the geometric fibers of [N] are smooth of
dimension 0. (To prove the statement for general commutative group schemes
would obviously require proving the first two conditions as well.)
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