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THEOREM 9.4

JOHAN COMMELIN, PETER SCHOLZE

Abstract. This is a detailed blueprint for the reduction of the Liquid Tensor Experiment to
Theorem 9.4 of [Sch20] whose formalization was achieved in June 2021. The argument presented
here is a simplified version of the original argument, and avoids the use of stable homotopy theory
by replacing abstract Breen–Deligne resolutions with the explicit Q′-construction of MacLane.

1. Introduction

In [Sch21], the second author posed the challenge to formally verify the following theorem from
[Sch20] (a special case of [Sch20, Theorem 9.1]):

Theorem 1.1. Let 0 < p′ < p ≤ 1 be real numbers, let S be a profinite set, and let V be a p-Banach
space. Denoting byMp′(S) the space of p′-measures on S regarded as a condensed real vector space,
the groups

ExtiCond(Ab)(Mp′(S), V ) = 0

vanish for i > 0.

Thus, the goal is a computation of certain Ext-groups in the abelian category of condensed
abelian groups; the latter is a variant of the category of topological abelian groups with much
better categorical properties (in particular, being abelian).

The Lean/mathlib community has taken on the challenge, and in particular has fully formalized
the key part of the proof, which is [Sch20, Theorem 9.4]. The purpose of this manuscript is to
outline the remaining work, and in the process take the opportunity to outline some of the ideas in-
volved. A mathematical contribution is a simplification of the part of the proof using Breen–Deligne
resolutions; this was discovered during discussions between the authors about the formalization of
[Sch20, Theorem 9.4]. We warn the reader that mathematically, this manuscript is anticlimactic: It
ends where it actually gets to the heart of the matter – but that part had already been done.

2. Condensed Abelian Groups

The category of condensed abelian groups is the category of abelian sheaves on the site of profinite
sets.1 Most of the material of this section has been formalized in Lean by Adam Topaz; we indicate
proofs only when the result is not yet formalized.

To get started, we recall the following result.

1There are some universe issues to be handled here. We believe that they are merely distracting, and leave those
to the formalization.
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Proposition 2.1. The category of totally disconnected compact Hausdorff spaces is naturally equiv-
alent to the Pro-category of finite sets, via sending a pro-finite set “ lim←−i ”Si to S = lim←−i Si, the
inverse limit taken in the category of topological spaces.

We denote their category by ProFin. We make ProFin into a site by declaring a cover to be a
finite family of jointly surjective maps {fi : Si → S}.

Definition 2.2. The category Cond(Ab) of condensed abelian groups is the category of abelian
sheaves on ProFin. The category of condensed sets Cond is the category of sheaves (of sets) on
ProFin.

The intuition here is that a condensed set/abelian group X is packaging the data of “continuous
maps from any profinite set S into X”, subject to some simple axioms. Unraveling the sheaf axioms
we have the following description.

Proposition 2.3. A condensed set (resp. abelian group) is a functor

X : ProFinop → Set (resp. Ab)

that preserves finite products (equivalently, X(∅) = ∗ and X(S1 t S2) = X(S1) × X(S2)) and for
any surjective map f : T → S, the map X(S) → X(T ) is injective with image all those x ∈ X(T )
whose two pullbacks to X(T ×S T ) agree.

By the Yoneda lemma (and a verification of the sheaf property in this case), any profinite set S
defines a condensed set, given by the functor

ProFinop → Set : S′ 7→ HomProFin(S
′, S).

We will in the following tacitly identify profinite sets as a full subcategory of condensed sets. In
a suitable sense, condensed sets are freely generated from profinite sets (subject to the gluing
conditions on profinite sets encoded in the covering condition).

More generally, any topological space defines a condensed set:2

Proposition 2.4. For any topological space X, the functor

X : ProFinop → Set : S 7→ Cont(S,X)

is a condensed set. Similarly, a topological abelian group M defines a condensed abelian group M .

The following proposition holds more generally for sheaves on any site.

Proposition 2.5. The category of condensed abelian groups is an abelian category. The forgetful
functor Cond(Ab) → Cond admits a left adjoint X 7→ Z[X], given as the sheafification of S 7→
Z[X(S)].

An important result will be the explicit description of the free condensed abelian groups Z[S] on
profinite sets S; this is the first result that has not been formalized.

2Possibly up to universe issues.
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Proposition 2.6. Let S = lim←−i Si be a profinite set, written as a cofiltered inverse limit of finite
sets Si. Then the map

Z[S]→ lim←−
i

Z[Si]

of condensed abelian groups is injective, and the image can be described as follows. For any n ≥ 0, let
Z[Si]≤n ⊂ Z[Si] be the subset of those sums

∑
s∈Si

ns[s] with
∑

s∈Si
|ns| ≤ n; this is (the condensed

set corresponding to) a finite set. Let

Z[S]≤n := lim←−
i

Z[Si]≤n ⊂ lim←−
i

Z[Si]

Then
Z[S] =

⋃
n

Z[S]≤n ⊂ lim←−
i

Z[Si].

Proof. See Proposition 2.1 of [Sch20]. �

A very pleasant property of condensed sets is the presence of enough projective objects.

Proposition 2.7. A profinite set S is projective in the category of profinite sets, i.e. any surjection
f : T → S splits, if and only if S is extremally disconnected, i.e. the closure of any open subset is
open. Any profinite S admits a surjection from an extremally disconnected profinite set.

Let ExtrDisc ⊂ ProFin be the subcategory of extremally disconnected profinite sets.

Proposition 2.8. Restricting along ExtrDisc ⊂ ProFin presents Cond (resp. Cond(Ab)) as the
category of finite-product preserving functors

ExtrDiscop → Set (resp. Ab).

Corollary 2.9. For any S ∈ ExtrDisc, the condensed abelian group Z[S] ∈ ExtrDisc is projective;
this class of objects generates Cond(Ab).

In particular, one can define Ext-groups in Cond(Ab) by using projective resolutions. It is how-
ever hard to find any explicit resolutions by projective condensed abelian groups, as extremally
disconnected profinite sets are very fragile objects – nearly any operation done to extremally dis-
connected profinite sets will lead to an object that is not extremally disconnected, for example the
product S1 × S2 of two infinite extremally disconnected profinite sets S1, S2 is never extremally
disconnected.3

In practice, however, Z[S] behaves like a projective object for any profinite set S. To quantify
this, set

H i(S,M) = ExtiCond(Ab)(Z[S],M)

for any condensed abelian group M . (This agrees with the derived functor of M 7→ M(S).) The
following general proposition holds true more generally on any coherent site.

3Let us however mention one nontrivial stability property: A theorem of Vermeer [Ver95] says that for any
endomorphism f : S → S of an extremally disconnected profinite set S, the fixed point set Sf is itself extremally
disconnected.
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Proposition 2.10. Let
M : ProFinop → Ab

be a functor, i.e. a presheaf of abelian groups on ProFin. Assume that M preserves finite products,
and that for any surjective map f : T → S, the complex

0→M(S)→M(T )→M(T ×S T )→M(T ×S T ×S T )→ . . .

is exact.
ThenM is a condensed abelian group, and for all profinite sets S and i > 0, one has H i(S,M) = 0

for i > 0.

Proof. This has not been formalized yet, so we indicate the proof. Proposition 2.3 shows that M is
a condensed abelian group. We prove by induction on i > 0 that H i(S,M) = 0 for all profinite sets
S, so assume the vanishing of Ext1, . . . ,Exti for some i ≥ 0. (This is vacuous for i = 0.) We aim
to prove that H i+1(S,M) = 0 for all profinite sets S. Pick any profinite set S and a cover T → S
with T ∈ ExtrDisc. We get a long exact sequence of condensed abelian groups

. . .→ Z[T ×S T ×S T ]→ Z[T ×S T ]→ Z[T ]→ Z[S]→ 0 :

Indeed, taken as presheaves on ExtrDisc, this is already true on the level of presheaves, where it
reduces to the case of surjections of sets in which case one can write down a contracting homotopy.
(Actually, the similar result is true in any topos, where one has to maybe argue a bit more carefully.)

The following argument is making explicit something usually seen through a spectral sequence.
Define inductively

K1 = ker(Z[T ]→ Z[S]),
K2 = ker(Z[T ×S T ]→ Z[T ])

etc. One gets exact sequences

0→ Kn → Z[Tn/S ]→ Kn−1 → 0

for n ≥ 2. From the long exact sequence

. . .→ H i(T,M)→ Exti(K1,M)→ H i+1(S,M)→ H i+1(T,M) = 0

we see that we have to prove that Exti(K1,M) = 0 (if i > 0, otherwise that M(T ) surjects onto
Hom(K1,M)). Assuming i > 0, we can go on, and using the inductive hypothesis applied to the
fibre products T ∗/S , we inductively see that

H i+1(S,M) = Exti(K1,M) = Exti−1(K2,M) = . . . = Ext1(Ki,M)

and eventually that this is the same as the cokernel of

M(T i/S)→ Hom(Ki+1,M).

But there is an exact sequence

0→ Hom(Ki+1,M)→M(T (i+1)/S)→ Hom(Ki+2,M)

and Hom(Ki+2,M) injects into M(T (i+2)/S). We see that

Hom(Ki+1,M) = ker(M(T (i+1)/S)→M(T (i+2)/S))
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and we need to see that

M(T i/S)→ Hom(Ki+1,M) = ker(M(T (i+1)/S)→M(T (i+2)/S))

is surjective, which is precisely the exactness of the Čech complex. �

An important case is that of complete normed group. In a normed group, we always assume that
the triangle inequality ||m+m′|| ≤ ||m||+ ||m′|| is satisfied, and || −m|| = ||m||.

Proposition 2.11. Let (M, ||·||) be a complete normed group, regarded as a topological group. Then
the corresponding condensed abelian group M sends any profinite set S to the completion of normed
group of locally constant maps S →M (with the supremum norm), and for any profinite set S, one
has H i(S,M) = 0 for i > 0.

Proof. This follows Proposition 2.10 and the part of [Sch20, Proposition 8.19] that is already for-
malized. �

In particular, this applies to the p-Banach spaces of Theorem 1.1. For 0 < p ≤ 1, a p-Banach
space V is a topological vector space that is complete and whose topology is induced by a p-norm
|| · || : V → R≥0, that is a norm satisfying the scaling behaviour ||rv|| = |r|p||v|| for r ∈ R, v ∈ V .
Any Banach space (V, || · ||) is a p-Banach space, for the norm || · ||p.

In fact, we will often regard R as a Z[T±1]-algebra via the map sending T to 1
2 . Then we can

more generally, for 1 > r ≥ 1
2 , consider r-Banach Z[T±1]-modules: These are complete normed

Z[T±1]-modules M whose norm satisfies ||Tm|| = r||m|| for m ∈ M . Then a p-Banach V is in
particular an r-Banach Z[T±1]-module, where r = 2−p.

One can also complete Z[T±1] itself with respect to the r-norm

||
∑
n∈Z

anT
n|| =

∑
n∈Z
|an|rn,

leading to a ring of arithmetic Laurent series Z((T ))r that converge on some disc {0 < |T | ≤ r} ⊂ C.
This ring will actually play a key role in the proof of Theorem 1.1.

3. Spaces of measures

At this point, we have discussed the abelian category Cond(Ab) and the notion of p-Banach
spaces that appears. It remains to define the space of measuresMp′(S). In order to avoid clutter
of notation, we rename p′ to p in this section.

Let us first give an informal description, working here with topological vector spaces. The space
Mp(S) of p-measures on S is a certain subspace of the space of (signed Radon) measuresM(S) on
S. The easiest definition of the latter is as the dual

M(S) = Hom(C(S,R),R)

to the space of continuous functions on S. We equipM(S) with the compactly generated version
of the weak topology; in other words,M(S) is written as the union

M(S) =
⋃
c>0

M(S)≤c
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of the subspaces of measures of norm ≤ c, each of which is naturally a compact Hausdorff space in
the weak topology. Now for 0 < p < 1, we let

Mp(S) ⊂M(S)

be the subspace of those measures that can be written as sums∑
n≥0

rn[sn]

for a sequence of elements sn ∈ S and rn ∈ R with
∑

n≥0 |rn|p <∞. The subspace

Mp(S)≤c ⊂Mp(S) ⊂M(S)

of those measures where
∑

n≥0 |rn|p ≤ c is closed in M(S)≤c, and thus itself compact Hausdorff.
Then

Mp(S) =
⋃
c>0

Mp(S)

is given the colimit topology.
Actually, a better way to describe these spaces as condensed vector spaces is the following; this

is also very close to the description of Z[S] in Proposition 2.6. The following recovers M(S) by
taking p = 1.

Definition 3.1. Let 0 < p ≤ 1, and let S = lim←−i Si be a profinite set written as a cofiltered limit
of finite sets. For any c > 0, let

R[Si]`p≤c ⊂ R[Si]
be the closed subset of all

∑
s∈Si

rs[s] with
∑

s∈Si
|rs|p ≤ c. Let

Mp(S)≤c = lim←−
i

R[Si]`p≤c

which is naturally a compact Hausdorff space, and

Mp(S) =
⋃
c>0

Mp(S)≤c.

We will not need to know the real vector space structure. The structure that we need is that this
is a compact-Hausdorff-filtered object with an abelian group structure.

Definition 3.2. A compact-Hausdorffly-filtered-pseudonormed abelian group is an abelian group X
together with negation-stable subsets X≤c ⊂ X for all c > 0, exhausting X, and compact Hausdorff
topologies on all X≤c such that negation is continuous, 0 ∈ X≤c for all c and the addition defines
continuous maps

X≤c ×X≤c′ → X≤c+c′ .

We note that there are two category structures one can consider: Those maps that strictly
preserve the (pseudo)norm, or those that only preserve it up to multiplication by a scalar. Both
structures are relevant. Regarding strict maps, we have inverse limits.
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Proposition 3.3. Consider an inverse system (Xi)i of compact-Hausdorffly-filtered-pseudonormed
abelian groups where all transition maps Xi → Xj send Xi,≤c to Xj,≤c. Then

X≤c := lim←−
i

Xi,≤c

is compact Hausdorff, and

X =
⋃
c

X≤c

is naturally a compact-Hausdorffly-filtered pseudonormed abelian group which is the limit of (Xi)i
in the strict category structure.

Proof. One can define negation and addition on X as continuous maps − : X≤c → X≤c and
+ : X≤c×X≤c′ → X≤c+c′ , and these pass to the unions. It should then be straightforward to check
the axioms. �

Any such object naturally gives rise to a condensed abelian group

X =
⋃
c

X≤c.

This is functorial in non-strict maps. We note the following exactness property.

Proposition 3.4. Consider a short exact sequence of abelian groups

0→ X ′
f−→ X

g−→ X ′′ → 0

such that all of X ′, X and X ′′ carry the structure of compact-Hausdorffly-filtered-pseudonormed
abelian groups. Assume that f(X ′≤c) ⊂ X≤c and g(X≤c) ⊂ X ′′≤c. Moreover, assume that there are
some cf and cg so that ker(g) ∩X≤c ⊂ f(X ′≤cf c) and X

′′
≤c ⊂ g(X≤cgc). Then the sequence

0→ X ′ → X → X ′′ → 0

of condensed abelian groups is exact.

Proof. We evaluate at S ∈ ExtrDisc. Any map S → X ′′ factors over some X ′′≤c, and then g :

X≤cgc×X′′X ′′≤c → X ′′≤c is a surjection of compact Hausdorff spaces; as S is extremally disconnected,
the map S → X ′′≤c can be lifted, showing that g : X(S)→ X ′′(S) is surjective. A similar argument
shows that the kernel of g : X(S)→ X ′′(S) is in the image of f : X ′(S)→ X(S), the latter clearly
being injective. �

It will also be useful to note that the hypothesis of Proposition 3.4 is stable under the limits of
Proposition 3.3. The philosophical reason for the disappearance of lim←−

1-issues is the good behaviour
of limits of compact Hausdorff spaces.

Proposition 3.5. Consider an inverse system

(0→ X ′i
fi−→ Xi

gi−→ X ′′i → 0)i
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of short exact sequences as in Proposition 3.4, satisfying the hypothesis for fixed constants cf and
cg. Moreover, assume that the transition maps X ′i → X ′j, Xi → Xj and X ′′i → X ′′j are strict, and
let X ′, X and X ′′ be their limits. Then

0→ X ′
f−→ X

g−→ X ′′ → 0

satisfies the hypotheses of Proposition 3.4 with the same cf and cg.

Proof. Pass to cofiltered limits of compact Hausdorff spaces in statements such asX ′′i,≤c ⊂ g(Xi,≤cgc),
noting that cofiltered limits of surjections of compact Hausdorff spaces are still surjective (by an
application of Tychonoff). �

For Theorem 1.1, we need to compute

Exti(Mp′(S), V ).

The Ext-group here is computed by taking a projective resolution of the source. Recall that these
projective generators are of the form Z[S] with S extremally disconnected. We are allowed to take
more generally profinite S, by Proposition 2.11. However, we are not allowed to take compact
Hausdorff S, as Proposition 2.11 will fail in general in that case, even for p-Banach’s when p < 1.

Thus, we are forced to resolve a real vector space Mp′(S) by Z[S′] for profinite S′. This seems
problematic, and it is here that we make a crucial turn to arithmetic Laurent series Z((T ))r → R.

Note that there is a short exact sequence

0→ Z((T ))r
1−2T−−−→ Z((T ))r → R→ 0.

In fact, we note that, up to changing the topology on Z((T ))r slightly(!), all terms here are naturally
compact-Hausdorffly-filtered:

(1) On Z((T ))r, we let

Z((T ))r,≤c = {
∑
n∈Z

anT
n |

∑
n∈Z
|an|rn ≤ c}.

Note that in particular each an is bounded in there, and for n� 0, an = 0 necessarily. This
gives an embedding of Z((T ))r,≤c into

∏
n�−∞[−cn, cn] for some constants cn (depending

on c and r). The latter is a profinite set, and Z((T ))r,≤c is a closed subset. This makes
Z((T ))r,≤c itself into a profinite set, and then Z((T ))r into a compact-Hausdorffly-filtered
pseudonormed abelian group.

(2) On R, we let
R≤c = {x ∈ R | |x|p ≤ c}

where p is chosen so that r = 2−p.

Proposition 3.6. The sequence

0→ Z((T ))r
1−2T−−−→ Z((T ))r → R→ 0.

satisfies the hypotheses of Proposition 3.4, for some explicit constants cf , cg.

Proof. This is a rather straightforward calculation, see [Sch20, Proposition 7.2]. The result has been
formalized by Filippo A.E. Nuccio. �
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Remark 3.7. This proposition translates the non-convex `p-norm on R into the `1-norm on Z((T ))r
(note that the norm on Z((T ))r is given by the `1-norm |an| on the coefficients). This is not a
contradiction because of the discretization of the coefficients in Z((T ))r, but we believe this passage
from continuous non-convexity to “discrete convexity” is a key aspect of the proof.

We can now also define similar spaces of measures over Z((T ))r. In fact, for any finite set S, we
can make the free module

Z((T ))r[S]
compact-Hausdorffly-filtered by the subsets

Z((T ))r[S]≤c = {
∑
s∈S

fs[s] | fs ∈ Z((T ))r,≤cs ,
∑

cs ≤ c},

and then pass to limits for profinite sets S as in the definition ofMp(S), i.e. formally using Propo-
sition 3.3:

M(S,Z((T ))r)≤c = lim←−
i

Z((T ))r[Si]≤c,

with union
M(S,Z((T ))r) =

⋃
c

M(S,Z((T ))r)≤c.

One can formally pass to free modules in Proposition 3.6, keeping the same constants, and then
Proposition 3.5 and Proposition 3.4 imply the following corollary.

Corollary 3.8. There is a short exact sequence of condensed abelian groups

0→M(S,Z((T ))r)
1−2T−−−→M(S,Z((T ))r)→Mp(S)→ 0.

In particular, 1− 2T is a nonzerodivisor onM(S,Z((T ))r), and

M(S,Z((T ))r)/(1− 2T ) ∼=Mp(S).

For later reference, we note that we could replace 1− 2T by T−1 − 2 here, as T is a unit.
We can now reformulate Theorem 1.1 in terms ofM(S,Z((T ))r). The following is [Sch20, The-

orem 9.1].

Theorem 3.9. Let 1 > r′ > r > 0 be real numbers, let S be a profinite set, and let V be an r-Banach
module over Z[T±1]. Then

ExtiZ[T−1](M(S,Z((T ))r′), V ) = 0

for i > 0.

As T−1 acts as an isomorphism on both terms, we could also compute the Ext-groups over Z[T±1],
or over Z[T ]; however, this formulation turns out to be most convenient in the proof.

Remark 3.10. Regarding the formalization, we note that the statement can be reformulated with-
out appeal to Ext-groups over Z[T−1] by using the resolution

0→M(S,Z((T ))r′)[T−1]
T−1−[T−1]−−−−−−−→M(S,Z((T ))r′)[T−1]→M(S,Z((T ))r′)→ 0



10 JOHAN COMMELIN, PETER SCHOLZE

which induces a long exact sequence

. . .→ ExtiZ[T−1](M(S,Z((T ))r′), V )→ Exti(M(S,Z((T ))r′), V )

(T−1)V −(T−1)M−−−−−−−−−−−→ Exti(M(S,Z((T ))r′), V )→ Exti+1
Z[T−1]

(M(S,Z((T ))r′), V )→ . . . .

In other words, Theorem 3.9 can be formulated as the bijectivity of

(T−1)V − (T−1)M : Exti(M(S,Z((T ))r′), V )→ Exti(M(S,Z((T ))r′), V )

for i > 0, and its surjectivity for i = 0.

The advantage of this reformulation is that now M(S,Z((T ))r′) has filtration steps that are
profinite (as opposed to merely compact Hausdorff), so the task of resolving by Z[S′]’s with profinite
S′ seems more manageable. It turns out that another advantage of the formulation of Theorem 3.9 is
that the scaling behaviour of the integers is decoupled from the scaling behaviour of the independent
variable T . (In R, they are of course intertwined, as T−1 = 2.)

Let us first explain how Theorem 3.9 implies Theorem 1.1.

Theorem 3.9 implies Theorem 1.1. Given 0 < p′ < p ≤ 1, let r = 2−p and r′ = 2−p
′ ; then 1 > r′ >

r > 0, and V becomes an r-Banach module via restriction of scalars along Z[T±1] → R : T 7→ 1
2 .

Thus, Theorem 3.9 gives the vanishing of

ExtiZ[T−1](M(S,Z((T ))r′), V ) = 0

for i > 0.
Using the reformulation of Theorem 3.9 as Remark 3.10, we note that the T−1-action on V is

given by multiplication by 2, so this can be translated into the bijectivity of

2− T−1 : Exti(M(S,Z((T ))r′), V )→ Exti(M(S,Z((T ))r′), V )

and its surjectivity for i = 0. Now the long exact sequence coming from Corollary 3.8 (applied with
r′ in place of r) gives Theorem 1.1. �

As a final reduction in this section, we have the following proposition.

Proposition 3.11. Decomposing Z((T ))r into positive and nonpositive coefficients yields a direct
sum decomposition

Z((T ))r = TZ[[T ]]r ⊕ Z[T−1].
This extends to a decomposition of spaces of measures

M(S,Z((T ))r) =M(S, TZ[[T ]]r)⊕M(S,Z[T−1])

where M(S,Z[T−1]) = Z[T−1][S] is the free condensed Z[T−1]-module on S. Letting Mr(S) =
M(S, TZ[[T ]]r), we get a short exact sequence of condensed Z[T−1]-modules

0→ Z[T−1][S]→M(S,Z((T ))r)→Mr(S)→ 0.

Proof. On Z((T ))r,≤c, only finitely many nonpositive coefficients can possibly be nonzero, and each
of them is bounded. This shows that the nonpositive summand of Z((T ))r is given by Z[T−1]. To
pass to profinite S, use Proposition 2.6. �
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Using the long exact sequence and Proposition 2.11 (and the equality ExtiZ[T−1](Z[T
−1][S],M) =

Exti(Z[S],M), whose precise proof will depend on the formalization chosen to talk about Ext-groups
over Z[T−1]), Theorem 3.9 follows from the following:

Theorem 3.12. Let 1 > r′ > r > 0, let S be a profinite set, and let V be an r-Banach Z[T±1]-
module. Then for all i ≥ 0,

ExtiZ[T−1](Mr′(S), V ) = 0.

Again, for formalization purposes it may be profitable to rephrase this as in Remark 3.10.

4. MacLane’s Q′-construction

The proof in [Sch20] now proceeds by using Breen–Deligne resolutions. These give a resolution
of a condensed abelian group A of the form

. . .→ Z[A3]⊕ Z[A2]→ Z[A2]→ Z[A]→ A→ 0

but the resolution is inexplicit – one only knows that it can be continued in a way where each term
is a finite direct sum of some Z[An]’s, and all differentials are given by some universal formulas. It
is slightly surprising that one can make explicit computations of Ext-groups by using an inexplicit
resolution; the reason it works is that Theorem 3.12 is asking about the vanishing of all Ext-groups,
which is a qualitative statement, and thus qualitative knowledge of a resolution can be good enough.

Unfortunately, the existence of a Breen–Deligne resolution needs some basic results in stable
homotopy theory (cf. [Sch19, Appendix to Lecture 4]), specifically about the homology of Eilenberg–
MacLane spaces. (The knowledge required is closely related to the finiteness of stable homotopy
groups of spheres.)

However, in the course of working on the formalization of [Sch20, Theorem 9.4], the first author
realized that there is a very explicit complex having many of the same properties as a Breen–Deligne
resolution (while not actually being a resolution). Later, we realized that this complex had been
constructed many years ago by MacLane, who called it Q′. See for example [Mac57, §4] for an
explicit description of Q′, or one of [EM51, §12] and [Mac58, §3] (where the construction is denoted
Q).

Definition 4.1. The MacLaneQ′-construction is the unique functorial association taking an abelian
group A to the complex

. . .
dA,n−−−→ Z[A2n ]

dA,n−1−−−−→ . . .
dA,2−−→ Z[A4]

dA,1−−→ Z[A2]
dA,0−−→ Z[A]

with the property that the identity maps Z[A2n ] → Z[A2n ] define a homotopy between the two
maps from

. . .
dA2,n−−−→ Z[A2n+1

]
dA2,n−1−−−−−→ . . .

dA2,2−−−→ Z[A8]
dA2,1−−−→ Z[A4]

dA2,0−−−→ Z[A2]

to
. . .

dA,n−−−→ Z[A2n ]
dA,n−1−−−−→ . . .

dA,2−−→ Z[A4]
dA,1−−→ Z[A2]

dA,0−−→ Z[A]
given by the addition map A2 → A, respectively by the sum of the two maps induced by the
projection maps A2 → A.
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We leave it to the reader to figure out that the condition allows one to define the differentials
inductively in a unique way. The first differential, in particular, has to be given by the map
Z[A2]→ Z[A] : [(a, b)] 7→ [a+ b]− [a]− [b]. One easily sees that H0(Q

′(A)) ∼= A naturally in A.
Modulo the computation of Q′(Z), one can compute the homology of Q′(A) for any A, at least if

A is torsion-free. (In the general case, a similar statement holds true, but involves Tor-groups.)

Proposition 4.2. For any i ≥ 0, the functor A 7→ Hi(Q
′(A)) has the following properties:

(1) It is additive, i.e.

Hi(Q
′(A⊕B)) ∼= Hi(Q

′(A))⊕Hi(Q
′(B)).

(2) It commutes with filtered colimits, i.e. for a filtered inductive system Ai,

lim−→
i

Hi(Q
′(A)) ∼= Hi(Q

′(lim−→
i

Ai)).

In particular, for torsion-free abelian groups A, there is a functorial isomorphism

Hi(Q
′(A)) ∼= Hi(Q

′(Z))⊗A.

As the proof shows, we do not really need the Q′-construction here: Any “Breen–Deligne package”
in the sense of the formalization of [Sch20, Theorem 9.4] will do.

Proof. Let us do the easy things first. Part (2) is clear as everything in sight commutes with filtered
colimits. Assuming (1), we note that there is a natural map

Hi(Q
′(Z))×A→ Hi(Q

′(A))

induced by functoriality of Hi(Q
′(−)). To check that this is bilinear and induces an isomorphism

Hi(Q
′(Z))⊗A ∼= Hi(Q

′(A)),

we can reduce to the case that A is finitely generated by (2). In that case A is finite free, and the
result follows from (1).

Thus, it remains to prove part (1), which has already been formalized. We recall that the
direct sum of two abelian groups M and N is characterized as the abelian group P with maps
iM : M → P , iN : N → P , pM : P → M , pN : P → N , satisfying pM iM = idM , pN iN = idN ,
pM iN = 0, pN iM = 0, idP = iMpM + iNpN . Apply this to M = Hi(Q

′(A)), N = Hi(Q
′(B)) and

P = Hi(Q
′(A⊕B)), with all maps induced by applying Hi(Q

′(−)) to the similar maps for A, B and
A⊕B. The fact that Hi(Q

′(−)) is a functor already gives all identities except idP = iMpM + iNpN ,
and the only issue is the question whether Hi(Q

′(−)) induces additive maps on morphism spaces.
But if f, g : C → D are any two maps of abelian groups, thenHi(Q

′(f+g)) = Hi(Q
′(f))+Hi(Q

′(g)),
by reducing to the universal case of the two projections D2 → D and using the homotopy baked
into Definition 4.1. �

Remark 4.3. Thinking ∞-categorically, the Q′-construction is determined by an additive functor
from finite free Z-modules to D≥0(Z). Any such functor is, by Morita theory, given by A 7→ A⊗ZM
for some M ∈ D≥0(Z⊗S Z); here S denotes the sphere spectrum. In fact, one can show that

M =
⊕
i≥0

(Z⊗S Z)2
i
[i],
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so
Q′(A) ∼=

⊕
i≥0

(A⊗S Z)2
i
[i].

As we will have no use for these results here, let us content ourselves with noting that this can be
easily deduced from Goodwillie calculus.

We note that by functoriality of the Q′-construction, it can also be applied to condensed abelian
groups.

Corollary 4.4. For torsion-free condensed abelian groups A, there is a natural isomorphism

Hi(Q
′(A)) ∼= Hi(Q

′(Z))⊗A

of condensed abelian groups.

Remark 4.5. Here, we only need to be able to tensor condensed abelian groups with (abstract)
abelian groups. (With more effort, one could prove that Hi(Q

′(Z)) is even finitely generated.) In
that case, the tensor product functor can be defined very naively by tensoring the values at any S
with the given abstract abelian group.

Proof. Evaluating at S ∈ ExtrDisc, we note that S 7→ Hi(Q
′(A(S))) is already a condensed abelian

group, and agrees with Hi(Q
′(Z))⊗A(S). Thus, the same is true after sheafification. �

If A is a torsion-free condensed abelian group equipped with an endomorphism f , then Q′(A)
is also equipped with the endomorphism f induced by functoriality, and by functoriality all pre-
vious assertions upgrade to Z[f ]-modules. We will need the following proposition in the proof of
Theorem 3.12.

Proposition 4.6. Let M and N be condensed abelian groups with endomorphisms fM , fN . Assume
that M is torsion-free (over Z). Then

ExtiZ[f ](M,N) = 0

for all i ≥ 0 if and only if
ExtiZ[f ](Q

′(M), N) = 0

for all i ≥ 0. More precisely, the first vanishes for 0 ≤ i ≤ j if and only if the second vanishes for
0 ≤ i ≤ j.

At this point, we need to be able to talk about Ext-groups of (bounded to the right) complexes
of condensed abelian groups (against condensed abelian groups).

The statement is also true without the torsion-freeness assumption onM , but slightly more nasty
to prove then (and not required for the application).

Proof. We induct on j. Consider first the case j = 0; then any map Q′(M) → N factors uniquely
over H0Q

′(M)[0] =M [0], yielding the result. Now assume that both sides vanish for 0 ≤ i < j; we
need to see that the vanishing of the Exti’s is equivalent. Consider the triangle

τ≥1Q
′(M)→ Q′(M)→M [0]→ .
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Taking the corresponding long exact sequence of Ext-groups against N , we see that it suffices to
see that

ExtiZ[f ](τ≥1Q
′(M), N) = 0

for 0 ≤ i ≤ j. But we can prove by descending induction on t that

ExtiZ[f ](τ≥tQ
′(M), N) = 0.

This is trivially true for t > i. Now look at the triangle

τ≥t+1Q
′(M)→ τ≥tQ

′(M)→ Ht(Q
′(M))[t]→

and the corresponding long exact sequence. It becomes sufficient to prove that

ExtiZ[f ](Ht(Q
′(M))[t], N) = 0

for 0 ≤ i ≤ j. Trivially,

ExtiZ[f ](Ht(Q
′(M))[t], N) = Exti−tZ[f ](Ht(Q

′(M)), N).

Note that t ≥ 1 here, so i − t < j (and can be assumed ≥ 0). Also Ht(Q
′(M)) ∼= Ht(Q

′(Z)) ⊗M .
Thus, it suffices to show that for every abelian group A and every 0 ≤ i < j,

ExtiZ[f ](A⊗M,N) = 0.

If A is free, then A ⊗M is a direct sum of copies of M , and the result follows as Ext turns direct
sums into products (and we assumed the vanishing of ExtiZ[f ](M,N) for 0 ≤ i < j). In general, one
can pick a two-term free resolution of A and use the long exact sequence. �

5. Final reduction

With Proposition 4.6, Theorem 3.12 reduces to the following assertion. Pick 1 > r′ > r > 0, a
profinite S, and some r-Banach Z[T±1]-module V as before. Then we want to prove that

ExtiZ[T−1](Q
′(Mr′(S)), V ) = 0

for all i ≥ 0.
At this point, it is profitable to rewrite this again as the bijectivity of

(T−1)V − (T−1)M : Exti(Q′(Mr′(S)), V )→ Exti(Q′(Mr′(S)), V ).

Now these Ext-groups can be computed! More precisely, recall that Q′(Mr′(S)) is a complex of the
form

. . .→ Z[Mr′(S)
2]→ Z[Mr′(S)]→ 0.

Termwise, the Ext-groups turn into cohomology groups

H i(Mr′(S)
2j , V ).

Unfortunately,Mr′(S) itself is not profinite, so we cannot directly apply Proposition 2.11. To get
around this last cliff, we write Q′(Mr′(S)) as a filtered colimit of complexes

Q′(Mr′(S))≤c : . . .→ Z[Mr′(S)
2
≤κ1c]→ Z[Mr′(S)≤κ0c]→ 0
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where the constants κ0 = 1, κ1, . . . are positive and chosen so that all differentials are well-defined.
(The possibility of choosing such constants has already been formalized, as part of the formalization
of [Sch20, Theorem 9.4].) It suffices to prove that

(T−1)V − (T−1)M : Exti(Q′(Mr′(S))≤c, V )→ Exti(Q′(Mr′(S))≤r′c, V )

is a pro-isomorphism in c, as then the final result follows by passing to a derived limit over c, see
Lemma 5.1 below. This final pro-isomorphism assertion can finally be written out, and it unravels
to the statement of [Sch20, Theorem 9.4] that has been formalized.

In passing to the derived limit over c, we use the following lemma.

Lemma 5.1. Assume that in each degree i, the map

(T−1)V − (T−1)M : Exti(Q′(Mr′(S))≤c, V )→ Exti(Q′(Mr′(S))≤r′c, V )

is a pro-isomorphism in c (i.e., pro-systems of kernels, and of cokernels, are pro-zero). Then

(T−1)V − (T−1)M : Exti(Q′(Mr′(S)), V )→ Exti(Q′(Mr′(S)), V ).

is an isomorphism.

Proof. We have
Q′(Mr′(S)) =

⋃
n

Q′(Mr′(S))≤n,

inducing a resolution

0→
⊕
n

Q′(Mr′(S))≤n →
⊕
n

Q′(Mr′(S))≤n → Q′(Mr′(S))→ 0.

Passing to a corresponding long exact sequence reduces one to checking that the squares∏
n Ext

i(Q′(Mr′(S))≤n, V )

��

//
∏
n Ext

i(Q′(Mr′(S))≤n, V )

��∏
n Ext

i(Q′(Mr′(S))≤n, V ) //
∏
n Ext

i(Q′(Mr′(S))≤n, V )

are bicartesian (here, horizontal maps are shift minus identity, and vertical maps are (T−1)V −
(T−1)M). Equivalently, the horizontal maps become isomorphisms on vertical kernels, and vertical
cokernels. But the vertical kernels and vertical cokernels induce pro-zero systems of abelian groups,
and then the horizontal kernels and cokernels compute lim←−n and lim←−

1
n
of their systems, which vanish.

�
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