GRONDSLAGEN VAN DE WISKUNDE 24/25 — HOMEWORK

JOHAN COMMELIN

1. Homework 1

- (1) (2pts) Let $f: X \to Y$ and $g: Y \to Z$ be two functions.
 - (a) Prove that if $g \circ f$ is surjective, then g is surjective.
 - (b) Prove that if $g \circ f$ is injective, then f is injective.
- (2) (2pts) Let $f: X \to Y$ be a function. Assume that f has a left inverse $g: Y \to X$, and a right inverse $h: Y \to X$. (In other words, $g \circ f = id_X$ and $f \circ h = id_Y$.) Prove that g = h.
- (3) (3pts) Prove that $2^{|\mathbb{N}|} \times 2^{|\mathbb{N}|} = 2^{|\mathbb{N}|}$.
- (4) (3pts) Prove that $|\mathbb{N}^{\mathbb{N}}| = 2^{|\mathbb{N}|}$.

2. Homework 2

The purpose of this homework is to prove the existence of nonprincipal ultrafilters. We will return to this topic in Section 2 in a few weeks.

Let X be a set. A *filter* on X is a collection \mathcal{F} of subsets of X satisfying the following conditions:

- (F1) $X \in \mathcal{F}$.
- (F2) If $A \in \mathcal{F}$ and $A \subseteq B \subseteq X$, then $B \in \mathcal{F}$.
- (F3) If $A, B \in \mathcal{F}$, then $A \cap B \in \mathcal{F}$.

(NB: Definition 2.5.6 in the book also requires $\emptyset \notin \mathcal{F}$, but we do not impose this condition!) Since filters are subsets of the powerset $\mathcal{P}(X)$, we can compare filters via the inclusion relation on $\mathcal{P}(X)$.

A filter \mathcal{F} is proper if it is not equal to the powerset $\mathcal{P}(X)$, or equivalently, if $\emptyset \notin \mathcal{F}$. A filter is called an *ultrafilter* if it is a maximal proper filter for the inclusion relation.

- (1) (1pt) Let A be subset of X. Show that the collection $\{B \subseteq X \mid A \subseteq B\}$ is a filter. This is the filter generated by A. Such filters are also called *principal*.
- (2) (1pt) Let C be the collection $\{B \subseteq X \mid X B \text{ is finite}\}$. Show that C is a filter. This filter is called the *cofinite filter*.
- (3) (3pt) Let \mathcal{F} be a proper filter on X. Use Zorn's lemma to prove that there exists an ultrafilter on X that contains \mathcal{F} .
- (4) (2pt) Let \mathcal{F} be a proper filter on X and suppose that A is a subset of X satisfying the following condition: For all $B \in \mathcal{F}$, the intersection $A \cap B$ is nonempty.
 - Show that there exists a proper filter \mathcal{F}' such that $A \in \mathcal{F}'$ and $\mathcal{F} \subseteq \mathcal{F}'$.
- (5) (1pt) Let \mathcal{U} be an ultrafilter and A a subset of X. Show that $A \in \mathcal{U}$ or $X A \in \mathcal{U}$.
- (6) (1pt) Show that a principal ultrafilter on X is generated by $\{x\}$ for some $x \in X$.
- (7) (1pt) Assume that X is infinite. Show that the cofinite filter C is proper and not contained in any principal ultrafilter. Conclude that there exist ultrafilters that are not principal.