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Tl;dr: In this seminar, we will refine our understanding of o-minimal theory by studying
in detail the proof of the Pila–Wilkie point counting theorem. After that, we will look at
applications of this result in diophantine geometry.

Main reference: We will follow a survey article by Scanlon [2].

Appetizer

Consider the following statement (a special case of Manin–Mumford):

0.1. Theorem. Let n > 0 be a natural number, and let G = (C∗)n be the n-th power of the unit
group of the complex numbers. Let f ∈ C[x1, . . . , xn] be a polynomial in n variables. Then the set

X = {(ζ1, . . . , ζn) ∈ G | each ζi is a root of unity and f(ζ1, . . . , ζn) = 0}

is a finite union of cosets of subgroups of G.

Originally, this statement was proven by Mann, but we will be interested in the Pila–Zannier
argument. It goes as follows. Let exp: C → C∗ denote the function z 7→ e2πiz. Observe that there
is an analytic covering exp: Cn → G. A tuple ζ = (ζ1, . . . , ζn) consists of roots of unity if and
only if there is some rational a ∈ Qn such that exp(a) = ζ. This means that we can translate our
problem into a question about rational solutions to the transcendental equation f(exp(z)) = 0.

It may seem as if we have made the problem a lot more difficult. However, by restricting to a
fundamental domain

D = {(z1, . . . , zn) ∈ Cn | 0 ≤ Re(zi) < 1 for each i}

we end up in a tame situation.

(i) It is again the case that ζ ∈ G is a tuple of roots of unity if and only if there exists a
rational a ∈ D ∩Qn such that exp(a) = ζ.

(ii) The restriction of exp to D is a definable function in the structure Ran,exp, which is an
o-minimal structure. From the point of view of mathematical logic, this means it is
exceedingly well-behaved.

We may now consider the set

X̃ = {z ∈ D | f(exp(z)) = 0}

which is an example of a definable set in Ran,exp. This is where the Pila–Wilkie point counting
theorem comes in.

Understanding the rational solutions to algebraic equations is a notoriously hard problem. But
it turns out that one can get a good grip on rational solutions to transcendental equations.
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Let Y ⊆ Rm be any set, definable in some o-minimal expansion of the reals. We define the
algebraic part Y alg ⊆ Y to be the union of all connected, positive dimensional semialgebraic
subsets of Y . (Recall that a set is semialgebraic if it is definable using Boolean combinations of
polynomial inequalities.) Next, we define the transcendental part of Y to be Y − Y alg.

The Pila–Wilkie point counting theorem asserts that there are sub-exponentially many rational
points in Y tra. To make this precise, we introduce the following function, which counts rational
points of bounded height :

N(Y, t) = #{(a1

b1
, . . . , an

bn
) ∈ Y tra | for each i we have |ai| ≤ t, |bi| ≤ t, ai, bi ∈ Z}

0.2. Theorem (Pila–Wilkie). For each ϵ > 0 there is a constant C = Cϵ so that N(Y, t) ≤ Ctϵ

for all t ≥ 1.

Now we return to our definable set of interest: X̃. Using a result by Ax (a function field
version of the Schanuel conjecture) we can show that X̃alg is indeed a finite union of cosets of
subgroups (intersected with D).

Hence we are done if we show that X̃tra only has finitely many rational points. This is done
by contradiction. If there are infinitely many points, then one can use Galois theory to show that
N(Y, t) must exhibit exponential growth. This contradicts Pila–Wilkie, so we win.

1. Introduction

Give an overview of the seminar. A long form of the appetizer above, with a bit more details
on what is meant with an o-minimal structure.

Besides Manin–Mumford for tori, mention applications to Manin–Mumford for abelian varieties
as well as the André–Oort conjecture for Shimura varieties.

Reference. §1 and §2 (aka p1–5) of [2]

2. O-minimality I: crash course on logic

Recap: language, structure, definable set, formula, sentence, theory, model.
In particular, recap the notation M |= φ.
State compactness! Explain what it means!

Reference. §3.1 (aka p6–10) of [2]

3. O-minimality II: examples

State theorems of Tarski and Wilkie. Discuss proof of Tarski’s theorem in some detail?
Explain what it means that Rexp is model complete, but don’t discuss the proof of Wilkie’s

theorem.
State theorem by Van den Dries, that Ran is o-minimal.
Finally, discuss Ran,exp.

Reference. first half of §3.2 (aka p10–14) of [2]
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4. O-minimality III: cell decomposition

Prove the existence of Skolem functions.
Define cells, state cell decomposition. Discuss the proof. (Note: a detailed proof is long and

complicated.)
Derive Lemma 3.35 of [2] on non-constant definable analytic curves in definable sets.

Reference. second half of §3.2 (aka p14–18) of [2]

5. Pila–Wilkie I: overview and structure of proof

Define the multiplicative height of rational numbers and the point counting function.
Define the algebraic part and the transcendental part of a definable set.
State the Pila–Wilkie theorem.
State the two main ingredients in the proof: Theorem 4.8 and Theorem 4.31 (from §4.3)
State and prove Proposition 4.11 (uses compactness, take your time) and Proposition 4.15.

Reference. §4.1 of [2].

6. Pila–Wilkie II: parametrization theorem

The goal is to prove Theorem 4.8.
State Theorem 4.19. Carefully outline the induction strategy.
Carry out the proof.

Reference. Last bit of §4.1 and all of §4.2 of [2].

7. Pila–Wilkie III: diophantine approximation

The goal is to prove Theorem 4.31.
Introduce notations, and state and prove Propositions 4.28 and 4.30.
This section includes a lot of complicated formulas. Think carefully about the best way to

present this material.

Reference. §4.3 of [2].

8. Pila–Wilkie IV: end of proof, refinements

Recap the proof structure: recall statement of Pila–Wilkie, Proposition 4.11, and Theorem 4.31.
Tie everything together: State Proposition 4.33
State Theorem 4.32 (generalization of Pila–Wilkie) and prove it.
Talk about refinements.

Reference. §4.4 of [2].

9. Applications I: Manin–Mumford for tori

Make the appetizer precise.

Reference. See §5 of [1] for detailed calculations.
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10. Applications II: Manin–Mumford for abelian varieties

The goal is to state and prove Theorem 5.1.
Along the way state and assume Theorems 5.5 and 5.7.

Reference. §5.1 of [2].
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