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1. Prolegomena

1.1. This text presents an outline of the proof by Clausen and Scholze, that there is
an analytic ring structure on the real numbers. The main sources are the lecture
notes [1, 2].

The aim is not to cover all the details of the proof, but to give an overview of
the structure, and to motivate some of the surprising steps. I hope that this text
can serve as a roadmap through for the actual proof, as written up in [2].

I thank Peter Scholze for his patient explanations and corrections.

1.2. This text will not recall the basics of the condensed formalism; see [1] for details.

1.3. In this text we write limD (resp. colimD) for the categorical limit (resp.
colimit) of a diagram D. Reminder: limD = lim←−D and colimD = lim−→D.

2. Analytic rings

2.1. This section recalls the definition and basic properties of analytic rings. The
main sources are [1, §VII] and [2, App. to §VI].

Proposition 2.5 is a crucial lemma that we will need later on.

2.2. Definition ([1, Def. 7.1, 7.4]). (i) A pre-analytic ring is a pair (A,M)

consisting of a condensed ring A together with a functor

M : {extr. disc. sets} −→ ModcondA

S 7−→M[S]

to the category of A-modules in condensed abelian groups, taking finite
disjoint unions to finite products, and a natural transformation S →M[S].
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(ii) An analytic ring (A,M) is a pre-analytic ring with the following property:
for every complex

C : · · · → Ci → · · · → C2 → C1 → C0

of A-modules in condensed abelian groups for which all Ci are direct sums
of modules of the formM[T ] for varying extremally disconnected sets T ,
the map

RHomA(M[S], C) −→ RHomA(A[S], C)
is an isomorphism of condensed abelian groups for all extremally discon-
nected sets S.

2.3. (i) The moduleM[S] should be thought of as the “free complete” module
generated by S. But it should be stressed thatM is additional data, and
different choices can be made for a given condensed ring A.

(ii) For the time being, we will not be concerned with applications of this
definition. Suffice it to say that there is a natural way to define the category
of modules over an analytic ring, and this category has very good properties.
For details, see [1, §VII].

For other discussions of applications, see the video recordings of the
masterclass on condensed mathematics, held in Copenhagen, 2020.

(iii) Our goal is to construct a particular example of an analytic ring: namely
the liquid structure on the real numbers.

2.4. Lemma. A pre-analytic ring (A,M) is an analytic ring if the following condition
is satisfied: for all index sets I and J , and extremally disconnected sets Si, S′j and
all maps

f :
⊕
i

M[Si] −→
⊕
j

M[S′j ]

of condensed A-modules with kernel K, the map

RHomA(M[S],K) −→ RHomA(A[S],K)

is an isomorphism in D(Cond(Ab)), for all extremally disconnected sets S.

Proof. See [2, Rem. 6.13]: Write the complex C occuring in the definition of analytic
ring as a limit of its Postnikov truncations. �

2.5. Proposition ([2, Prop. 6.15]). Let (A,M) be an analytic ring. The module
A′ def

= M[∗] is a condensed ring, and for every S, M[S] is naturally a module
over A′. This yields a natural morphism of pre-analytic rings (A,M)→ (A′,M).

The pre-analytic ring (A′,M) is analytic, and the forgetful functor D(Modcond(A′,M))→
D(Modcond(A,M)) is an equivalence.

3. Spaces of measures I

3.1. In this section we define certain spaces of measuresM<p(S), depending on a
real number 0 < p ≤ 1. The functor S 7→ M<p(S) will define the liquid analytic
ring structure on R.

Let 0 < p ≤ 1 be a real number.

3.2. Definition. Let S be a finite set. The condensed R-module R[S] is naturally
filtered:

R[S]`p≤c =
{
(as)s ∈ R[S]

∣∣∣ ∑
s

|as|p ≤ c
}

This construction is functorial in S.
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3.3. Definition. For any profinite set S, written as limit of finite sets S = limi Si,
we define

Mp(S)≤c = lim
i

R[Si]`p≤c.

This construction is functorial in S.
The colimit

Mp(S) =
⋃
c≥0

Mp(S)≤c

is naturally a condensed R-module.

3.4. Definition. For p′ < p, there are natural maps

Mp′(S)→Mp(S)

and we define
M<p(S) = colim

p′<p
Mp′(S).

The spaceM<p(S) is a condensed R-module, functorial in S.

4. Synopsis: main statement

4.1. Theorem. Let 0 < p ≤ 1 be a real number. Then

(R, S 7→ M<p(S))

is an analytic ring.

4.2. The first step towards proving this theorem is to construct a pre-analytic ring
of overconvergent Laurent series, which admits (R, S 7→ M<p(S)) as quotient.

By showing that the ring of overconvergent Laurent series is an analytic ring, we
may then conclude that the real numbers are also an analytic ring. This is carried
out in Section 7.

One may argue that the liquid structure on the ring of overconvergent Laurent
series is actually the main result. I expect that this analytic ring will play an
important role in liquid mathematics in the future.

5. Convergent Laurent series

5.1. Several subrings of Z((T )) will play an important role in the proof. We will
introduce these subrings in this section. See also [2, §VII].

5.2. Definition. Let r > 0 be a real number. Denote by Z((T ))r the following
subring of Z((T )): { ∑

n�−∞
anT

n
∣∣∣ ∑ |an|rn <∞

}
which is naturally filtered by

Z((T ))r,≤c =
{ ∑
n�−∞

anT
n
∣∣∣ ∑ |an|rn ≤ c

}
.

5.3. (i) It is crucial for later steps in the proof that Z((T ))r,≤c is naturally a
profinite set. We leave this verification as exercise to the reader (or see [2,
Prop. 6.8]).

(ii) Note that for r ≥ 1, the subring Z((T ))r consists exactly of the Laurent
polynomials. In general, Z((T ))r′ ⊆ Z((T ))r for r′ ≥ r.
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5.4. Definition. The ring of overconvergent Laurent series Z((T ))>r is the union⋃
r′>r Z((T ))r′ . Equivalently, it is{ ∑

n�−∞
anT

n
∣∣∣∃r′ > r, |an|(r′)n → 0

}
.

5.5. The ring Z((T ))>r is quite spectacular. It is a principal ideal domain, whose
quotients consist of almost all the local fields that show up in number theory:

(i) R and C;
(ii) finite extensions of Qp, for all p;
(iii) Fp((T )), for all p.

The reader is encouraged to read more about the details in [2, §VII].
Pick some 0 < x ≤ r. We will focus on the quotient

θx : Z((T ))r −→ R
T 7−→ x

For our applications, we can always arrange x = 1
2 , in which case it is clear that

ker(θx) is a principal ideal, namely (2T − 1) = (T−1 − 2).
We get a similar quotient map Z((T ))>r → R. What is spectacular, is that

R is not just a quotient of Z((T ))>r as ring, but also as pre-analytic ring, see
Proposition 6.5 below.

6. Spaces of measures II

6.1. In this section we define certain spaces of measures with coefficients in Z((T ))>r,
for 0 < r < 1. There are many similarities with Section 3, but I have not found a
precise common generalisation.

The main result is Proposition 6.5, which asserts that the pre-analytic ring
(R, S 7→ M<p(S)) is a quotient of a pre-analytic ring structure on Z((T ))>r.

Fix some 0 < r < 1.

6.2. Definition. Let S be a finite set. The condensed Z((T ))r-module Z((T ))r[S]
is naturally the union of:

Z((T ))r[S]≤c =
{ ∑
n∈Z,s∈S

an,sT
n[s] ∈ Z((T ))r[S]

∣∣∣ an,s ∈ Z,
∑
|an,s|rn ≤ c

}
.

This construction is functorial in S.

6.3. Definition. For any profinite set S, written as limit of finite sets S = limi Si,
we define

M(S,Z((T ))r)≤c = lim
i

Z((T ))r[Si]≤c.

This construction is functorial in S.
The colimit

M(S,Z((T ))r) =
⋃
c≥0

M(S,Z((T ))r)≤c

is naturally a condensed Z((T ))r-module.

6.4. Definition. For r′ > r, there are natural maps

M(S,Z((T ))r′)→M(S,Z((T ))r)

and we define
M(S,Z((T ))>r) = colim

r′>r
M(S,Z((T ))r′).

The spaceM(S,Z((T ))>r) is a condensed Z((T ))>r-module, functorial in S.
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6.5. Proposition. Pick 0 < x ≤ r < 1, and let 0 < p ≤ 1 be such that xp = r.
Recall the map θx : Z((T ))r → R from 5.5. Then there are natural isomorphisms

M(S,Z((T ))r)/ ker(θx) ∼=Mp(S)

M(S,Z((T ))>r)/ ker(θx) ∼=M<p(S)

Proof. The ingredients for a proof are in [2, Prop. 7.2]. �

7. Synopsis: reduction to an arithmetic setting

7.1. In order to prove Theorem 4.1, it suffices to prove the following theorems.

7.2. Theorem. Let 0 < r < 1 be a real number. Then

(Z[T−1], S 7→ M(S,Z((T ))>r))

is an analytic ring.

7.3. Theorem. Let 0 < r < 1 be a real number. Then

(Z((T ))>r, S 7→ M(S,Z((T ))>r))

is an analytic ring.

Proof. Apply Proposition 2.5 to Theorem 7.2. �

Proof of Theorem 4.1. Put r = ( 12 )
p. As argued in Proposition 6.5, the pre-analytic

ring (R, S 7→ M<p(S)) is a quotient of (Z((T ))>r, S 7→ M(S,Z((T ))>r)). Since the
latter is an analytic ring by Theorem 7.3, we conclude that the pre-analytic ring
structure on the reals is also an analytic ring (see also [2, Prop. 12.8]). �

7.4. We are now left with the formidable task of proving Theorem 7.2. It will turn
out to be crucial that we use the base ring Z[T−1], which is in some sense just small
enough to make the argument work.

Specifically, to move forward we will prove the following more explicit statement,
which is sufficient by Lemma 2.4. However, the first thing we do after stating it, is
to carry out a sequence of further reduction steps.

7.5. Proposition. Let K be a condensed Z[T−1]-module that is the kernel of a map

f :
⊕
i∈I
M(Si,Z((T ))>r) −→

⊕
j∈J
M(S′j ,Z((T ))>r)

where all Si and S′j are extremally disconnected. Then for all 1 > r′ > r and all
profinite S, the map

RHomZ[T−1](M(S,Z((T ))r′),K)→ RHomZ[T−1](Z[T−1][S],K)

in D(Cond(Ab)) is an isomorphism.

8. Simplifying the target of RHom

8.1. We present here a summary of the reduction steps made in [2, §VIII]. Beware:
the details take up more than 7 pages. We are sweeping a lot under the rug.

To approach Proposition 7.5, the first step is to drastically simplify the condensed
Z[T−1]-modules K for which we need to verify the claim of that Proposition.
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8.2. The starting point of the simplifications is [2, Prop. 8.3], which shows that
M(S,Z((T ))r is a pseudocoherent condensed Z[T−1]-module.

The upshot is thatRHomZ[T−1](M(S,Z((T ))r,K) commutes with filtered colimits
in K. In a short sequence of steps, this allows one to get rid of the direct sums in
Proposition 7.5.

8.3. The next steps make a very careful analysis of the objects K for which one still
has to verify the claim of Proposition 7.5. These are carried out in Proposition 8.5
through Theorem 8.12 of [2].

These allow us to identify some sort of “Banach spaces” V inside the remaining K,
and it suffices to check the claims for these spaces V . The precise characterisation
of these V is given by the following definition.

8.4. Definition ([2, Def. 8.13]). An r-normed Z[T±1]-module is a Z[T±1]-module V
that is semi-normed (as abelian group) satisfying ‖Tv‖ = r‖v‖ for all v ∈ V .

8.5. We will see later on, that r-normed modules are amenable to resolutions by
profinite sets. This is one useful ingredient in the final proof.

To such an r-normed Z[T±1]-module V , we attach a condensed abelian group V̂ :

V̂ : Profinite −→ Ab

S 7−→ completion of {f : S → V | f is loc. constant}

Note that V̂ is naturally a condensed Z[T±1]-module, and V̂ (S) is a complete
semi-normed group endowed with the sup-norm, for every profinite set S.

All in all, we are now left with the following target. (In the process, the claim
about internal homs has also been simplified to a claim about external homs.)

8.6. Proposition ([2, Thm 8.14]). Fix radii 1 > r′ > r > 0. Then for all r-normed
Z[T±1]-modules V and all profinite sets S, the map

RHomZ[T−1](M(S,Z((T ))r′), V̂ ) −→ RHomZ[T−1](Z[T−1][S], V̂ )

is a quasi-isomorphism.

9. Simplifying the source of RHom

9.1. We will now explain the reduction steps applied to the source of the RHom’s.
One of the elements in the final proof is the so-called Breen–Deligne resolution. This
tool is great for showing that some derived functor vanishes. So we will now move
to such a setting.

9.2. Definition. LetMr′(S) denote the quotient

M(S,Z((T ))r′)/Z[T−1][S].

9.3. This is a place where it is crucial that we work with the base ring Z[T−1],
because it allows us to give the following explicit description of the spaceMr′(S).
We proceed in the same steps as the definition ofM(S,Z((T ))r′).

Mr′(S)≤c =
{ ∑
n≥1,s∈S

an,sT
n[s]

∣∣∣ ∑
n≥1,s∈S

|an,s|(r′)n ≤ c
}

S finite

Mr′(S)≤c = lim
i
Mr′(Si)≤c S = lim

i
Si profinite

Mr′(S) =
⋃
c≥0

Mr′(S)≤c

Crucially, the spacesMr′(S)≤c are profinite.
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By using the short exact sequence

0→ Z[T−1][S]→M(S,Z((T ))r′)→Mr′(S)→ 0

we can therefore reduce our task to checking that

RHomZ[T−1](Mr′(S), V̂ ) = 0

for all profinite sets S and r-normed Z[T±1]-modules V .

9.4. Theorem. Fix 0 < r < r′ < 1. For all profinite sets S, and all r-normed
Z[T±1]-modules V , we have

RHomZ[T−1](Mr′(S), V̂ ) = 0.

9.5. It is finally time to start computing the RHom. We will proceed by resolving
Mr′(S), using a functorial resolution known as the Breen–Deligne resolution, with
the useful property that it is constructed completely from objects of the form Z[M ].
More on these resolutions below, see Section 11.

In our setting, the M ’s occuring in the objects Z[M ] will be powers ofMr′(S).
We are interested in evaluating HomZ[T−1](Z[M ], V̂ ). To proceed, we make two
more steps.

First of all, we should keep in mind that T−1 acts on M , and therefore there is
a natural map Z[T−1][M ]→ Z[M ]. Now there are two different actions of T−1 on
Z[T−1][M ]: the first acts on the ‘inside’, via M , the second acts on the ‘outside’,
via the coefficients Z[T−1]. We get a resolution

0→ Z[T−1][M ]
T−1−[T−1]−−−−−−−→ Z[T−1][M ]→ Z[M ]→ 0

We should therefore get a grip on

HomZ[T−1](Z[T−1][M ], V̂ ) = V̂ (M),

the map

V̂ (M)
T−1−[T−1]∗−−−−−−−−→ V̂ (M),

and its kernel. Denote this kernel by V̂ (M)T
−1

. Naively speaking, we would want
to show that

V̂ (Mr′(S))
T−1

→ V̂ (Mr′(S)
2)T

−1

→ . . .

is exact.
However, M is not a profinite set. Therefore V̂ (M) does not admit a direct

description as completion of the group of locally constant functions M → V . This
is where the final step comes in. Recall thatMr′(S) is a colimit of the profinite
setsMr′(S)≤c. We will thus add another dimension to the (already 2-dimensional)
resolution ofMr′(S), by replacing V̂ (M) with the diagram (V̂ (M≤c))c∈R≥0

.
Summing up, We need to show that

V̂ (Mr′(S)≤•)
T−1

→ V̂ (Mr′(S)
2
≤•)

T−1

→ . . .

is exact, for a suitable notion of exactness. We will now make this notion precise.

9.6. Definition. A system of complexes is a collection of complexes of semi-normed
abelian groups C•c , for c ∈ R≥0, with restriction maps Cc1 → Cc2 , for c1 ≥ c2, such
that the obvious diagrams commute.
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9.7. Definition. Fix a natural number m, and reals k ≥ 1, K ≥ 0, and c0 ≥ 0. A
system of complexes C•• is weakly ≤ k-exact in degrees ≤ m for c ≥ c0 with bound K
if the following condition is satisfied.

For all c ≥ c0, all x ∈ Cikc with i ≤ m and any ε > 0, there is some y ∈ Ci−1c

such that
‖x|c − dy‖ ≤ K‖dx‖+ ε.

9.8. The following result show the relation of this new concept with the ordinary
notion of exactness.

9.9. Lemma. Let k ≥ 1, c0 ≥ 0 be real numbers, and m ∈ N. Let C•• be a system of
complexes, and for each c ≥ 0 let Dc be a cochain complex of semi-normed groups.
Let fc : C•kc → D•c and gc : D•c → C•c be norm-nonincreasing morphisms of cochain
complexes of semi-normed groups such that gc ◦ fc is the restriction map C•kc → C•c .
Assume that for all c ≥ c0 the cochain complex Dc is normed exact. Then C•• is
weakly ≤ k-exact in degrees ≤ m and for c ≥ c0 with bound 1.

10. Synopsis: a technical home straight

10.1. After a shear endless amount of simplification steps, we are now ready to state
the technical theorem that marks the final episode of the grand proof.

The rest of this text covers material from [2, §IX].
In this section, we will often write M forMr′(S) or similar objects.

10.2. Theorem. Fix 0 < r < r′ < 1. For each natural number m, there exist
constants k ≥ 1, K ≥ 0, and c0 ≥ 0, such that for all profinite sets S, and r-normed
Z[T±1]-modules V , the system of complexes

V̂ (Mr′(S)≤κ0c)
T−1

→ V̂ (Mr′(S)
2
≤κ1c)

T−1

→ . . .

is weakly ≤ k-exact in degrees ≤ m and for c ≥ c0 with bound K.

10.3. The numbers κ0, κ1, . . . appearing in the statement, are a sequence of constants
in R≥0 depending on the chosen Breen–Deligne resolution. The reason they pop up
is the following: As we will see, the differentials V̂ (Mm)T

−1 → V̂ (Mn)T
−1

showing
up in the complex do not map V̂ (Mm

≤c)
T−1

into V̂ (Mn
≤c)

T−1

, for all c ∈ R≥0. Instead,
there exists a κ, such that V̂ (Mm

≤c)
T−1

maps to V̂ (Mn
≤κc)

T−1

. Inductively, this leads
to the sequence of constants (κi)i appearing in the statement above.

10.4. The proof of Theorem 10.2 relies on several ideas, and many technical estimates.
We summarize three of the main ideas, omitting many important details.

10.5. The first step is to construct a system of double complexes, by resolving M≤c
with the Čech cover of the summation map

∑
: MN
≤c/N →M≤c, for some suitable

N ∈ N, applying the V̂ (_)T
−1

construction, and taking alternating sums of the
resulting maps coming from the Čech cover.

V̂ (Mr′(S)≤κ0c)
T−1

V̂ (Mr′(S)
2
≤κ1c

)T
−1

. . .

V̂ (Mr′(S)
N
≤κ0c/N

)T
−1

V̂ (Mr′(S)
2N
≤κ1c/N

)T
−1

. . .

...
... . . .
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10.6. The goal is to prove, by induction, that the first row of this system of double
complexes is weakly exact in degrees ≤ m, for suitable constants. The strategy, is
to apply a quantitative, normed, spectral sequence argument. See [2, Prop. 9.6] for
the precise statement.

This argument requires three assumptions:
(i) Rows 0 up to m+ 1 must be weakly exact in degrees ≤ m − 1, again for

suitable constants.
(ii) Columns 0 up to m are weakly exact in degrees ≤ m, for suitable constants.
(iii) The chain map between rows 0 and 1 must be homotopic to a chain map of

small norm.
The first condition follows from the induction hypothesis. This induction hypoth-

esis is necessarily quite subtle, because every row must be of such a shape that one
can again apply to it:

(i) the construction of the system of double complexes,
(ii) which should then satisfy the three assumptions above.

Making sure that the second assumption can be applied to the double complexes
constructed from the higher rows is a delicate step.

10.7. Verifying the second assumption above, is relatively straight-forward, modulo
a crucial combinatorial input explained in the next paragraph.

The outline of the argument is as follows: Let X• → Y be the Čech cover of a
surjective map X → Y . Now apply V̂ (_) and take alternating sums of the face
maps. Then the result is an exact complex, for which one has a precise control over
the norms of the differentials.

We are precisely in the setting where Lemma 9.9 applies. In a final step, one
passes from V̂ (_) to V̂ (_)T

−1

, but we omit the details of this computation.

10.8. The tricky part in applying the argument outlined in the preceding paragraph
is the surjectivity assumption.

Due to the omitted details, it might seem as if we need to prove that
∑

: MN
≤c/N →

M≤c is surjective. However, it is sufficient to show something slightly weaker,
namely that the map

∑
: MN → M allows one to split x ∈ M≤c into an N -tuple

xi ∈M≤c/N+δ, for some well-controlled error term δ.
This is a non-trivial combinatorial result, because we are now working with

integral coefficients, instead of working over the reals. In particular, because we
need it not just forMr′(S), but also for all the fibered products that occur in the
Čech cover, and iteratively for Čech covers of those, etc. See [2, Lem. 9.8] for details.

10.9. Finally, we need to verify the third assumption of the spectral sequence
argument. By a property of Breen–Deligne resolutions, the map∑∗

: V̂ (M•• )
T−1

→ V̂ (MN•
•/N )T

−1

is chain homotopic to the formal sum of the maps

π∗i : V̂ (M•• )
T−1

→ V̂ (MN•
•/N )T

−1

,

where πi : MN →M is the i-th projection.
By a careful computation, which once again relies on many omitted details, one

can show that the norm of this formal sum can be made arbitrarily small by choosing
N sufficiently large.

10.10. Expanding on this summary goes beyond the scope of this text. For details,
see [2, §IX] and https://leanprover-community.github.io/liquid/.

https://leanprover-community.github.io/liquid/
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11. Breen–Deligne resolutions

11.1. Theorem (Breen, Deligne, [1, Appendix to §IV]). There exists a functorial
resolution of an abelian group A of the form

· · · →
ni⊕
j=1

Z[Ari,j ]→ · · · → Z[A3]⊕ Z[A2]→ Z[A2]→ Z[A]→ A→ 0

where all ni and ri,j are natural numbers.

11.2. The existence of Breen–Deligne resolutions is highly non-constructive. As a
consequence, it is hard to compute with them, unless the goal is a vanishing result.

We are interested in the vanishing of certain Ext-groups, and for this purpose
the following related result suffices.

11.3. Theorem. There exists a functorial complex Q′(A) of an abelian group A of
the form

· · · → Z[A2i ]→ . . .Z[A4]→ Z[A2]→ Z[A]→ A→ 0,

with the following property: Let A and B be abelian groups. If for all i, we have
Exti(Q′(A), B) = 0, then also Exti(A,B) = 0 for all i.

11.4. The complex Q′(A) shows up in the literature on MacLane homology, although
a certain normalized version Q(A) seems to be more well-known.

Without going into details, we state two properties of Q′:
(i) For morphisms f, g : A → B, there is a natural homotopy of chain maps

between Q′(f + g) and Q′(f) +Q′(g).
(ii) There is a natural isomorphism Q′(A) ∼= Q′(A)⊕2[1]⊕ Z⊗S A.
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