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1 Prolegomena

Let G be a group. Let K be a field. Let Repk(G) denote the category of
representations of G over k. We can restrict to certain subcategories:

• the category of finite-dimensional representations;

• if k and G are endowed with a topology, the category of continuous
representations;

• if G is endowed with a topology, the category of smooth representations.

Let us recall a generalisation of the definition of a smooth representation.
Assume that G is endowed with a topology (e.g., G is locally profinite). A
representation (ρ, V ) of G is smooth if for every v ∈ V the stabalizer Stabv ⊂ G
is open.

Let i : K → L be a field extension. There is an “extension of scalars” functor

RepK(G) −→ RepL(G)

that is compatible with the aforementioned restrictions to subcategories. (In the
case of continuous representations, we obviously need i to be continuous.) If i is
an isomorphism, the functor is an equivalence of categories.

The crucial remark is that the notion of smooth representation does not
depend on a topology on the coefficient field. In particular, though the topolo-
gies on C and Q̄` are incompatible, the categories RepC(G) and RepQ̄`

(G) are
equivalent.

1.1 Structure of the Galois group of p-adic fields

Let p be a prime number. Let F be a p-adic field, with residue field of cardinality
q. Let GF denote the absolute Galois group of F . Let WF be the Weil group
of F . Let IF ⊂ WF denote the inertia group. Let PF ⊂ IF denote the
wild inertia group. Recall that vF : WF /IF → Z is an isomorphism, where 1
corresponds with the class of geometric Frobenius elements (i.e., those reducing
to φ = (x 7→ x−q)). We write ‖x‖ = q−vF (x) Recall that IF /PF is canonically
isomorphic to lim(n,p)=1 µn (n ranges over the positive integers coprime to p).

The action of WF /IF ∼= Z on IF /PF is given by wiw−1 = i‖w‖.
Let ` 6= p be a prime number. There is a canonical map t` : lim(n,p)=1 µn →

limn µ`n projecting IF /PF to its maximal `-adic quotient. We write Z`(1) for
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limn µ`n . Note that Z`(1) is a free Z` module of rank 1, on which WF /IF acts
via wxw−1 = x‖w‖, for x ∈ Z`(1) and w ∈WF /IF .

Write Z`(n) for the Galois module Z`(1)⊗n, if n ≥ 0. If n < 0, then Z`(n)
denotes Z`(−n)∨. If K is a field extension of Q`, and V is a K-vector space
(with an action of WF /IF ), then V (n) denotes V ⊗Z`

Z`(n).

1.2 A natural source of Galois representations

Let X/F be a projective smooth variety over F .

Remark 1.1. A short recap of what a projective smooth variety is.
The adjective projective indicates that X is a closed subspace of projective

space, defined by homogeneous polynomial equations with coefficients in F .
The adjective smooth means that the Jacobian matrix of partial derivatives

of these equations is a matrix of full rank.

The `-adic étale cohomology

Hi
` = Hi

ét(XF̄ ,Q`) = lim
n∈Z>0

Hi
ét(XF̄ ,Z/`nZ)⊗Z`

Q`

is a finite dimensional Q`-vector space that is naturally endowed with a continuous
representation of GF .

Remark 1.2. In general Hi
` is not smooth. If it were smooth, then an open

subgroup of GF would act trivial. If dimHi
` > 0, this is only true for i = 0.

However, if we restrict to the Weil group WF , we do not only change the
group but also get a more permissive topology. In particular, the inertia group
IF is open in the Weil group.

Since Hi
` is finite-dimensional, being smooth is equivalent with having an

open kernel (i.e., an open subgroup acting trivially). In particular Hi
` is smooth

(as representation of WF ) if and only if an open subgroup of IF acts trivially.
In other words, if after some finite (ramified) extension E/F , the inertia

group IE acts trivially. One says that Hi
` as representation of GE is unramified,

and as representation of GF is potentially unramified.
If X/F has good reduction, then Hi

` is unramified, hence smooth. Conversely,
if X/F is an abelian variety, and H1 is unramified, then X/F has good reduction
(this is the criterion of Néron–Ogg–Shafarevich).

Having good reduction, means that one can give a set of equations defining
X, such the equations have integral coefficients, and such that after reducing
these equations modulo the prime of F they define a smooth variety over the
residue field.

2 Motivation for Weil–Deligne representations

Rougly speaking, a Weil–Deligne representation is

• a representation (ρ, V ) of WF ;

• together with a nilpotent element N ∈ End(V );

• and some conditions that we make precise later.
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To see why this definition makes sense we prove the `-adic monodromy theorem
of Grothendieck.

Theorem 2.1 (`-adic monodromy theorem, Grothendieck). Let K be an ex-
tension of Q`. Let (ρ, V ) be a finite-dimensional representation of WF over
K.

Then there exists an open index subgroup H ⊂ IF , such that ρ(x) is unipotent
for all x ∈ H.

Proof. Let d denote the dimension of V . Fix a basis of V , providing identifications
V ∼= Kd, and GL(V ) ∼= GLd(K). Let K+ be the ring of integers of K, that is,
the integral closure of Z` in K.

Denote with Ki the multiplicative groups 1 + `iGLd(K
+). These are open

subsets of GLd(K). By the continuity of ρ, we see that the image of an open
subgroup H of WF is contained in K2. (We need this at the end of the proof.)

The image of H is a pro-`-group (i.e., a projective limit of finite `-groups).
Recall that IF �

∏
`′ 6=p Z`′ (with kernel, the wild ramification group PF ). Thus

ρ|IF∩H factors via the projection t` : IF → Z`(1).

Write X for log(ρ(x)) =
∑
j∈Z≥0

(−1)j−1 (ρ(x)−1)j

j . To see that the series

converges, recall that ρ(x) is in K2, that is, ρ(x) is 1 mod `2; hence each term

(−1)j−1 (ρ(x)−1)j

j is divisible by `j , which implies convergence.

Since ρ|IF∩H factors via t` : IF → Z`(1), we get the relation

log(ρ(wxw−1)) = log(ρ(x)‖w‖) = ‖w‖ log(ρ(x)) = ‖w‖X,

for x ∈ IF and w ∈WF /IF , which implies that for all w ∈WF /IF the matrices X
and ‖w‖X are conjugate. Let ai(X) be the i-th symmetric polynomial expression
in the roots of the characteristic polynomial of X. (So it is the d− i-th coefficient

of the characteristic polynomial.) Then ai(X) = ai(‖w‖X) = ‖w‖iai(X). Since
the action of WF /IF on Z`(1) is a free action (the extension of F generated by
Z`(1) is infinite), and Aut(Z`(1)) ∼= Z∗` has a finite torsion subgroup, we can
choose w such that it does not act torsion, which implies ai(X) = 0, for i > 0.
Consequently X is nilpotent. In particular ρ(x) = exp(X) is unipotent.

Remark 2.2. A similar theorem is true when one replaces WF by GF . The proofs
have a very similar flavour. If I am correct, theorem 2.1 implies the version for
GF , since unipotent subgroups are closed in the image of GF , and WF ⊂ GF is
dense.

Corollary 2.3. There exists a unique nilpotent operator N ∈ EndK(V )(−1),
such that ρ(x) = exp(t`(x)N), for all x in some open subgroup of IF .

Proof. Fix some x0 ∈ H ∩ IF , such that t`(x0) is non-trivial, and put N =
t`(x0)−1 log(ρ(x0)). By theorem 2.1, N is a nilpotent element of EndK(V )(−1).

Recall that ρ|H∩IF factors via t` as some continuous representation σ. The
continuous representation Z`(1) → GLK(V ), x 7→ exp(xN), coincides with σ
on t`(x0), hence on t`(x0)Z`(1). This proves existence of N . The uniqueness
is immediate from the definition (take logarithms on both sides of ρ(x) =
exp(t`(x)N), and choose x such that t`(x) is non-trivial (hence invertible) in
Z`(1)).
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3 Weil–Deligne representations

It is time for a proper definition of Weil–Deligne representations.

Definition 3.1. A Weil–Deligne representation over K is a triple (ρ, V,N),
where

• (ρ, V ) is a finite-dimensional smooth representation of WF over K;

• N ∈ EndK(V ) is a nilpotent endomorphism,

such that for all x ∈WF the condition

ρ(x)Nρ(x)−1 = ‖x‖N

holds. (Alternatively, N is a Galois-invariant element of EndK(V )(−1).)
A morphism of Weil–Deligne representations (ρ1, V1, N1)→ (ρ2, V2, N2) is a

map of representations f : (ρ, V )→ (ρ2, V2), such that f ◦N = N2 ◦ f .

It is immediate from the definition that the category WDRepK(WF ) does
not depend on a topology on K. Just like in the prolegomena, we can therefore
(non-canonically!) identify WDRepC(WF ) and WDRepQ̄`

(WF ).

Remark 3.2. Corollary 2.3 provides us with a method to attach a Weil–Deligne
representation to each finite-dimensional continuous representation of the Weil
group.

Since (ρ, V ) is not smooth in general, the naive approach (ρ, V ) 7→ (ρ, V,N)
does not work. We have to change the representation a bit.

What does work is taking a Frobenius element Φ ∈WF , and defining a twist
of ρ via

ρΦ(Φax) = ρ(Φax) exp(−t`(x)N), a ∈ Z, x ∈ IF .
Lemma 3.3. The triple (ρΦ, V,N) defines a Weil–Deligne representation.

Proof. • We check that for all x ∈WF the condition

ρΦ(x)NρΦ(x)−1 = ‖x‖N

holds. Expanding the definition, this amounts to checking

ρ(x)Nρ(x)−1 = ‖x‖N (3.4)

because the inner exponentials commute with N , as the exponents are
multiples of N .

By the uniqueness of N , and its construction in theorem 2.1 and corol-
lary 2.3 the formula (3.4) holds. (See Del-66, of Deligne’s Antwerp paper.)

• This implies that ρΦ : WF → GL(V ) is a homomorphism, so that (ρΦ, V )
is actually a representation of the Weil group.

ρΦ(ΦaxΦby) = ρΦ(Φa+b(Φ−bxΦb)y)

= ρ(Φa+b(Φ−bxΦb)y) exp(−t`((Φ−bxΦb)y)N)

= ρ(ΦaxΦby) exp(−(t`(Φ
−bxΦb) + t`(y))N)

= ρ(Φax)ρ(Φby) exp(−‖Φ−b‖t`(x)N) exp(−t`(y)N)

= ρ(Φax)ρ(Φby) exp(−t`(x)N)‖Φ
−b‖ exp(−t`(y)N)

= ρ(Φax) exp(−t`(x)N)ρ(Φby) exp(−t`(y)N).

In the last step we used the previous point.
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• By corollary 2.3 it is trivial on some open subgroup of IF . Hence (ρΦ, V )
is smooth.

Theorem 3.5. The functor

(— )WD : RepK(WF ) −→ WDRepK(WF )
(ρ, V ) 7−→ (ρΦ, V,N)

gives an equivalence of categories between the category of finite-dimensional
continuous representations of the Weil group, and Weil–Deligne representations.

Proof. Lemma 3.3 shows that the functor is well-defined on objects. Let
f : (ρ1, V1)→ (ρ2, V2) be a map of WF -representations. Then f ◦N1 = N2 ◦f , by
the uniqueness of the monodromy operators (expand the Ni as logarithms, and
the relation is obvious). By the same argument, one then finds f◦ρ1(x) = ρ2(x)◦f ,
for all x ∈WF . Consequently, (— )WD is a faithful functor.

To show that it is essentially surjective, observe that if (ρ, V,N) is a Weil–
Deligne representation, then (ρΦ, V ) with

ρΦ(Φax) = ρ(Φax) exp(t`(x)N)

is a continuous representation of WF . Indeed, ρΦ is a homomorphism by a similar
argument as that in lemma 3.3, and it is continuous because ρ is continuous,
as well as IF → GLK(V ), x 7→ exp(t`(x)N). The uniqueness of the monodromy
operator implies that N is the monodromy operator associated with (ρΦ, V ).
That the functor is full is now an analogous argument to that of faithfulness.

Remark 3.6. • We have not yet indicated whether the functor depends on
our choice of Φ and t. It does, but only up to a natural automorphism of
the identity functor. We leave this as an exercise to the reader.

• We should note that the operations of tensor product and dual in the
category WDRepK(WF ) are not defined as one might naively do.

If one declares the above functor to be a tensor functor, one computes

(ρ1, V1, N1)⊗ (ρ2, V2, N2) = (ρ1 ⊗ ρ2, V1 ⊗ V2, N1 ⊗ 1 + 1⊗N2)

(ρ, V,N)∨ = (ρ∨, V ∨,−N∨)

The reason for the formulas for the monodromy operators is

log(ρ1(x0)⊗ ρ2(x0)) = log(ρ1(x0)⊗ 1 + 1⊗ log(ρ2(x0))

log(ρ1(x0)∨,−1) = − log(ρ1(x0))∨

4 Semisimple and Φ-semisimple objects

By abstract nonsense, the functor of theorem 3.5 transfers semisimple objects to
semisimple objects. However, there is a big catch to this. In the literature, and
in my eyes this is very poor choice of terminology, a Weil–Deligne representation
(ρ, V,N) is called semisimple if (ρ, V ) is semisimple as representation of WF .
Using this notion, one calls a representation (ρ, V ) of WF Φ-semisimple if the
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attached Weil–Deligne representation (ρ, V )WD is semisimple. In other words, if
we postcompose (— )WD with

WDRepK(WF ) −→ RepK(WF )
(ρ, V,N) 7−→ (ρ, V )

(4.1)

(which is not its inverse!), and we take the inverse image of the class of semisimple
objects, then we obtain the Φ-semisimple representations of WF .

It is true (and obvious from eq. (4.1)) that every categorically semisimple
Weil–Deligne representation is semisimple.

Finally, one obtains the rather trivial corollary to theorem 3.5 that there is a
canonical bijection between isomorphism classes of

• n-dimensional, Φ-semisimple, continuous representations of WF ;

• n-dimensional, semisimple, Weil–Deligne representations of WF .

5 Conclusion

We end the talk with a couple of conjectures that are not directly related to the
Langlands program, but very much involve Weil–Deligne representations.

Return to the situation where X/F is a smooth projective variety. Let `
and `′ be two primes different from p. Using the above theory we can attach
a Weil–Deligne representation to the `-adic cohomology Hi

`. This is an object
(Hi

`)WD in WDRepQ
`
(WF ).

Conjecture 5.1 (CWD, Fontaine (1994)). There is a Weil–Deligne representa-
tion H over Q, such that H ⊗Q` ∼= (Hi

`)WD for all ` 6= p.

As a corollary to this conjecture, if we choose an embedding i : Q` → C, then
the isomorphism class of (Hi

`)WD ⊗i C does not depend on i or `.
As final conclusion, a quote from Matt Emerton on MathOverflow:

[F]rom the point of view of Galois representations, the point is that
continuous Weil group representations on a complex vector space, by
their nature, have finite image on inertia.

On the other hand, while a continuous `-adic Galois representation
of GQp

(with ` 6= p of course) must have finite image on wild inertia,
it can have infinite image on tame inertia. The formalism of Weil–
Deligne representations extracts out this possibly infinite image, and
encodes it as a nilpotent operator (something that is algebraic, and
doesn’t refer to the `-adic topology, and hence has a chance to be
independent of `).
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