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0.1 abstract. — In 2001 M. Kontsevich and D. Zagier posed a conjecture on algebraic integrals, which
rougly says that the theorem of Stokes (the fundamental theorem of calculus in higher dimensions) is
the only non-trivial relation between such integrals. In this talk I will formulate this conjecture, and
indicate how it relates to conjectures and research in other fields.
0.2 Protagonists. —This talk owes a lot to work of M. Kontsevich, D. Zagier, Y. André, A. Grothendieck,
A. Connes, F. Brown, P. Cartier, (J. Ayoub, M. Nori, and more). For this talk I made use of [7, 6, 4, 2, 1, 5]

1 What is a period?
Let f1, . . . , fn be polynomials in Q[X1, . . . ,Xd ]. We define:

Z ( f1, . . . , fn ) =
{
x ⊂ Rd ��� fi (x ) ≥ 0 for all 1 ≤ i ≤ n

}
1.1 Definition. — A rational algebraic set is a subset of Rd of the form Z ( f1, . . . , fn ) where the fi are
polynomials in Q[X1, . . . ,Xd ]. «

1.2 Definition. — A rational function in d variables is an element of Q(X1, . . . ,Xd ). «

1.3 Definition. — A real period is a real number r ∈ R, such that there exists a positive integer d ∈ Z≥0,
some rational algebraic set D ⊂ Rd , and some algebraic function f in d variables, such that

r =

∫
D
f dx1 · · · dxd .

A period is a complex number z, such thatℜ(z) and ℑ(z) are real periods. «

1.4 Example. — The following numbers are periods:
√
2 =

∫
2x2≤1

dx

log(2) =

∫ 2

1

dx
x

π =

"
x2+y2≤1

dx dy

ζ (3) =

∫
0≤x1≤x2≤x3≤1

dx1
1 − x1

dx2
x2

dx3
x3

2

∫ b

−b

√
1 +

a2x2

b4 − b2x2
dx perimeter of ellipse with radii a and b

More generally, all algebraic numbers are periods; logarithms of algebraic numbers are periods; ζ (n),
for n ∈ Z≥2, or even “multiple zeta values” are periods.

On the other hand, it is conjectured that e and 1/π are not periods. «
Periods form a ring P , since integrals can be added and multiplied (Fubini). The ring is countable,

since we can enumerate polynomials and rational functions.

2 The period conjecture
2.1 Definition. — The space of abstract periods, P, is the Q-vector space generated by symbols (D,ω),
where

1/5



» D is an algebraic subset of Rd for some d ∈ Z≥0; and
» ω is a rational d-form on D (i.e. f dx1 · · · dxd for some rational function f in d variables);

modulo the relations:

» (linearity) λ(D,ω) + λ′(D,ω ′) ∼ (D, λω + λω ′); and
» (variable substitution) (φ (D),ω) ∼ (D,φ∗ω·| det Jφ |), for invertible rational functionsφ : Rd → Rd

(where Jφ denotes the Jacobian matrix of partial derivatives of φ); and
» (fundamental theorem of calculus a.k.a. Stokes’ theorem) (∂D,ω |∂D ) ∼ (D, dω), where ∂D is the

boundary of D, and dω is the exterior derivative of ω. «

Let me emphasize that Stokes theorem in one variable really just says
∫ b
a f ′(x ) dx = f (b) − f (a).

2.2 Conjecture (Kontsevich–Zagier). — The natural evaluation map

P −→P

(D,ω) 7→
∫
D
ω

is an isomorphism. «
Observe that this map is surjective by definition of P .

This conjecture is almost innocent to state, but is of the same caliber as some of the Millenium
problems. If it is true, it answers many questions about transcendence and algebraic dependence of
numbers occuring naturally in arithmetic.

2.3 Reformulation in terms of algebraic geometry. —The definition of period in terms of algebraic
sets and rational functions can be viewed as an algebro-geometric definition in a natural way. Let X
be an algebraic variety over Q. The complex solutions of the polynomials defining X form a complex
manifold, denotedX (C). By a theorem of de Rham, there is a perfect pairing between singular homology
and de Rham cohomology:

H
sing
i (X (C),C) ×Hi

dR (X (C)) −→ C

(γ ,ω) 7−→
∫
γ
ω

The singular homology group parameterises (classes of) subsets over which one can integrate; while the
de Rham cohomology group parameterises (classes of) differential forms that can be integrated.

Since X is an algebraic variety over Q, there exists a version of de Rham cohomology that yields a
Q-vector space. The above pairing then becomes

H
sing
i (X (C),Q) ×Hi

dR (X ) −→ C

(γ ,ω) 7−→
∫
γ
ω

and complex numbers that are in the image of this map are called periods (of weight i) of X . Every
period in the previous sense is the period of some X , and vice versa. (Technically, we need to consider
boundary divisors, but I will ignore this for this talk.) Let us denote this set with P i (X ).

2.4 Definition. — The field of periods (of weight i) of X (or (X ,D)) is the subfield Q(P i (X )) of C
generated by the periods of X (or (X ,D)). «
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The cohomology groups of X all carry natural representations by pretty big groups. Conjecturely,
the images of all these representations should yield the same group. This group is called the motivic
Galois group of X (for weight i).

Under the Hodge conjecture, it is isomorphic to the Mumford–Tate group Gi
B (X ). Under the Tate

conjecture, it is isomorphic to the image of the Galois representation on étale cohomology: Gi
ℓ
(X ). We

will accept these hard conjectures, for the purposes of this talk; but let me say that there are good
theories of motives that allow for unconditional definitions of the motivic Galois group.

The period conjecture by M. Kontsevich and D. Zagier, as stated above, is equivalent to the following
(older) conjecture by A. Grothendieck (a generalisation of note 10 of [5]).
2.5 Conjecture (Grothendieck). — For all algebraic varieties X and integers i

dimQGi
B (X ) = tr.deg.QQ(P i (X )). «

3 Motives
We already briefly mentioned motives in the previous section. The entire idea behind motives goes back
to A. Grothendieck, and is about searching for a universal cohomology theory for algebraic varieties. To
each algebraic variety X one can associate a wealth of cohomology groups, that all behave very similar.
A mapX → Y of varieties, induces mapsH(Y ) → H(X ) on these cohomology groups. A motive is more
or less a summand of the cohomology of an algebraic variety that occurs as the kernel or image of such
an induced map.

This brief and sketchy introduction can be made very precise, and recently1 there has been a lot
of progress in developing a good theory of motives. Let M be a motive occuring as summand of the
cohomology of sum variety X . Just like we associated periods with X , we may now associate a natural
subset P (M ) of P (X ) with M . In other words, it makes sense to speak about the periods of a motive.

Even more is true. The period conjecture claims that one can recover a motive M from the set
P (M ). (To be precise, one has to look count the periods with multiplicities, because there might be an
irreducible motive occuring more then once in the decomposition of M into irreducible motives.) This
means that it should be possible to define motives in terms of the algebra of periods. This is precisely
what M. Kontsevich does in definition 23 of [6]. For technical reasons, one has to add the inverse of π
to get a good theory of motives. Let P̂ be P[ 1

2π i ] ⊂ C.
3.1 Definition (paraphrase of definition 23 of [6]). — A framed motive of rank r ≥ 0 is an invert-
ible (r × r )-matrix (Pi j )1≤i, j≤r with coefficients in the algebra P̂ , satisfying the equation a technical
condition2 on the coefficients.

The space of morphisms from one framed motive to another, corresponding to matrices

P1 ∈ GLr1 (P̂ ) and P2 ∈ GLr2 (P̂ ),

is defined as{
T ∈ Matr2×r1 (Q)

���TP1 = P2T
}
. «

4 Relation with theoretical physics
Letme first point out that I do not know anything at all aboutmodern theoretical physics. My knowledge
does not extend beyond elementary high school physics. Please accept my sincere apologies for my
ignorance.

Nevertheless, let me to quote M. Kontsevich [6, §5.2] to point out that there seem to be very deep
connections between the theory of periods and theoretical physics:

1Without going into the entire history, let me mention the work of V. Voevodsky, which is now pushed to the limit by J. Ayoub.
2This condition basically says that the matrix must occur as submatrix of the period matrix of an algebraic variety.
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D. Broadhurst and D. Kreimer (see [3]) observed that all Feynman diagrams up to 7 loops in
any qft in even dimensions gives same numbers as appear in Drinfeld associator. It is not
clear a priori why this happens. In any case one can see immediately from formulas that
all constants are in fact periods.

4.1 Conjecture. —Themotivic Galois groupGB acts (in homotopy sense) on the homotopy
Lie algebra g∗ associated with the free massless theory in any dimension. In the case of
even dimension the action factors through the quotient group GT as in [6, §3.4]. The action
should be somehow related with the action on values of Feynman integrals.

In [4], P. Cartier seems to suggest that a better understanding of periods and the associated pro-
algebraic groups would yield insight in fundamental physical constants such as the fine structure con-
stant, and a “cosmic Galois group” acting on them.

Finally, for a long time people had conjectured that the periods (resp. motives) associated with qfts
would be multiple zeta values (resp. mixed Tate motives). However, a few years ago F. Brown proved
that this is not the case. In my primitive understanding, I think this means that the second sentence in
the quoted conjecture by M. Kontsevich is wrong. Apparently, a bigger class of motives is needed to
describe qfts.

5 Appendix on Feynmann graphs and amplitudes
Let G be a graph. We introduce some notation:

V (G ) the set of vertices of G
E (G ) the set of edge of G

deg(v ) the degree of v ∈ V (G ), i.e., the number of edges leaving v
π0 (G ) the set of connected components of G
b1 (G ) the first Betti number of G, equal to #E (G ) −#V (G ) +#π0 (G )

Recall that a spanning treeT ⊂ G is a subgraph ofG such thatV (T ) = V (G ),#π0 (T ) = 1, and b1 (T ) = 0.

5.1 Definition. — The graph polynomial of G is the polynomial ΨG ∈ Z[αe |e ∈ E (G )] given by

ΨG =
∑
T ⊂G

∏
e<E (T )

αe ,

where the sum is over all spanning trees T ⊂ G. «
Observe that ΨG is homogeneous of degree b1 (G ).

5.2 Definition. — A graph G is called

» physical if deg(v ) ≤ 4 for all v ∈ V (G );
» overall log-divergent if #E (G ) = 2b1 (G ); and
» primitive if #E (γ ) > 2b1 (γ ) for every subgraph γ ⊊ G. «

LetG be a physical overall log-divergent primitive graph. Choose a numbering of the edges E (G ) �
{1, . . . ,#E (G )}. Let σ (G ) be the standard simplex on the edges of G, in other words,

σ (G ) =
{
(t1, . . . , t#E (G ) )

���∑
e

te = 1
}
.

Let ΩG be the (#E (G ) − 1)-form given by

ΩG =

#E (G )∑
e=1

(−1)eαe dα1 ∧ . . . ∧ d̂αe ∧ dα#E (G ) .
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The amplitude of G is the integral

IG =

∫
σ (G )

ΩG

Ψ2
G
.

The integral converges by virtue of our assumptions (log-divergent, primitive) on G. It is immediate
that IG is a period. It is also this period of which people for a long time thought that it would always be
a mixed zeta value; but F. Brown gaven example of a (planar) graph G such that IG is not a mixed zeta
value.

Once more: I see the relation between such graphs and Feynmann diagrams, but I do not know
anything about how Feynmann diagrams play a role in theoretical physics. I would be very glad to
learn this from the experts in the audience.

Bibliography
[1] Yves André. “Galois theory, motives and transcendental numbers”. In: Renormalization and Galois

theories. Vol. 15. IRMA Lect. Math. Theor. Phys. Eur. Math. Soc., Zürich, 2009, pp. 165–177.
[2] Joseph Ayoub. “Periods and the conjectures of Grothendieck and Kontsevich-Zagier”. In: Eur. Math.

Soc. Newsl. 91 (2014), pp. 12–18.
[3] D. J. Broadhurst and D. Kreimer. “Association of multiple zeta values with positive knots via Feyn-

man diagrams up to 9 loops”. In: Phys. Lett. B 393.3-4 (1997), pp. 403–412.
[4] Pierre Cartier. “A mad day’s work: from Grothendieck to Connes and Kontsevich. The evolution of

concepts of space and symmetry [in Les relations entre les mathématiques et la physique théorique,
23–42, Inst. Hautes Études Sci., Bures-sur-Yvette, 1998; MR1667896 (2000c:01028)]”. In: Bull. Amer.
Math. Soc. (N.S.) 38.4 (2001). Translated from the French by Roger Cooke, 389–408 (electronic).

[5] A. Grothendieck. “On the de Rham cohomology of algebraic varieties”. In: Inst. Hautes Études Sci.
Publ. Math. 29 (1966), pp. 95–103.

[6] Maxim Kontsevich. “Operads and motives in deformation quantization”. In: Lett. Math. Phys. 48.1
(1999). Moshé Flato (1937–1998), pp. 35–72.

[7] MaximKontsevich andDonZagier. “Periods”. In:Mathematics unlimited—2001 and beyond. Springer,
Berlin, 2001, pp. 771–808.

5/5


