Good reduction

Johan Commelin

March 19, 2013

1 Introduction

In a course on elliptic curves the topic of *good reduction* will pass by sooner or later. If one takes a close look, it is usually a bit vague what is really meant by *good reduction*. In this talk we will make it more precise.

NB: We will use the term *elliptic curve* in our motivation quite a bit, but postpone the definition till we want to make precise statements about them.

The word *reduction* suggests that we want to look at quotient maps, or something similar. E.g., we have local ring *R*, with residue field κ , an *R*-scheme *X*, and then we define the reduction \tilde{X} as $X_{\kappa} = X \times_R \operatorname{Spec} \kappa$.

On the other hand, given an elliptic curve E/\mathbb{Q} , we are 'used' to reducing the curve modulo a prime p, to a curve \tilde{E}/\mathbb{F}_p . This does not really fit into our first attempt, as we cannot base change from \mathbb{Q} to \mathbb{F}_p .

We see that a solution to this problem would be passing through the base \mathbb{Z} . We have to do this in the right manner, though. Of course every Q-scheme is also a \mathbb{Z} -scheme, so we could base change the composition E/\mathbb{Z} to \mathbb{F}_p . However, this would give us the empty scheme, which is of course not very interesting. Indeed the only non-trivial fibre of $E \rightarrow \operatorname{Spec} \mathbb{Q} \rightarrow \operatorname{Spec} \mathbb{Z}$ lies over the generic point of Spec \mathbb{Z} . We would like to extend E to Spec \mathbb{Z} such that the other fibres are non-trivial.

To generalise this picture, we might say that we have an integral scheme *S*, with generic point η . Further we have a scheme *X* over the function field, $\kappa(\eta)$. To 'reduce' *X* at some point $s \in S$, we first need to extend $X/\kappa(\eta)$ to a scheme over *S*, and then we can look at the fibre above *s*. I.e., we are looking for a solution to the problem

such that the diagram is Cartesian. As we have seen, we could take ? = X, but then we do not get any interesting reduction. To prevent this kind of solutions we want nice properties of the extension of *X*. For this we will introduce the notions of *flat morphism* and *smooth morphism* below.

However, we can only hope for nice properties of the extension if $X \to \kappa(\eta)$ has those nice properties, since we will see that the nice properties are stable under base change.

2 Flat and smooth morphisms

For a good and readable introduction I refer to the notes [1] on smooth morphisms by PETER BRUIN.

Let $f: X \to S$ be a morphism of schemes.

Recall from commutative algebra that a ring map $A \rightarrow B$ is of finite presentation if there is an isomorphism of *A*-algebras $B \cong A[X_1, ..., X_n]/(P_1, ..., P_m)$. I.e., *B* can be generated as *A*-algebra by finitely many elements, with finitely many relations on the generators.

2.1 Definition. We say that f is *locally of finite presentation* if there exists an open affine cover (Spec B_i)_i of S, such that for every i the inverse image f^{-1} (Spec B_i) has a cover by spectra of finitely presented B_i -algebras.

Recall that for a commutative ring *A* an *A*-module *M* is called *flat* if the functor $M \otimes _$ is exact (or equivalently, left-exact). A ring map $A \rightarrow B$ is called flat if *B* is flat as *A*-module.

- **2.2 Definition.** The morphism *f* is called *flat* if for each $x \in X$ the induced map on stalks $\mathcal{O}_{S,f(x)} \to \mathcal{O}_{X,x}$ is flat.
- **2.3 Example.** Since flatness (of modules) is a stalk local property, a map of rings $A \rightarrow B$ is flat if and only if Spec $B \rightarrow$ Spec A is flat.

Localisation maps are flat. In particular $\operatorname{Spec} \mathbb{Q} \to \operatorname{Spec} \mathbb{Z}$ is flat. Thus, if we have a flat \mathbb{Q} -scheme X, then $X \to \operatorname{Spec} \mathbb{Z}$ is a flat extension to \mathbb{Z} .

Any scheme over a field is flat.

2.4 Lemma. The composition of two flat morphisms is flat. Flat morphisms are stable under base change. «

The following proposition will be handy in the near future.

2.5 Proposition. Assume that

- S is a Dedekind scheme, and
- X is integral, and
- f is non-constant,

then f is flat.

Proof. See [2, Corollary 4.3.10].

2.6 Definition. The morphism *f* is called *smooth* if

- it is locally of finite presentation, and
- it is flat, and

- for each geometric point $\overline{s} \to S$ the fibre $X_{\overline{s}} = X \times_S \overline{s}$ is regular (i.e., a nonsingular variety).

This definition shows one way of thinking about smooth morphisms: they are 'continuous' families (flat) of nonsingular varieties (locally of finite presentation, geometrically regular fibres) parametrized by the base.

- 2.7 Remark. Recall that we have the Jacobian criterion to determine if a geometric fibre is regular.
- **2.8 Lemma.** The composition of two smooth morphisms is smooth. Smooth morphisms are stable under base change. «
- **2.9 Example.** For any scheme *S*, and any positive integer *n*, the structure morphisms $\mathbb{A}^n_S \to S$ and $\mathbb{P}^n_S \to S$ are smooth.

3 Good reduction

We give the following definition in a local setting. Let *k* be a local field, with valuation *v*, and valuation ring (A, \mathfrak{m} , κ). Let X/k be a proper smooth scheme.

3.1 Definition. We say that *X* has *good reduction at v* if there exists a proper smooth *A*-scheme \mathcal{X} such that the generic fibre \mathcal{X}_k is isomorphic to *X*.

It is now immediate that the special fibre X_{κ} is a proper smooth scheme over Spec κ .

3.2 Example. Take $k = \mathbb{Q}_5$, and let *X* be the scheme cut out of \mathbb{P}^2_k by the homogenous equation $y^2z = x^3 + 2xz^2 + 4z^3$. Observe that X/k is projective, hence proper. Further (by theory of elliptic curves) we know that *X* is smooth, since $\Delta = -16(4 \cdot 2^3 + 27 \cdot 4^2) = -7424 \neq 0$. Also Δ is not divisble by 5, and therefore we know that $y^2z = x^3 + 2xz^2 + 4z^3$ also defines a proper smooth scheme \mathcal{X} over \mathbb{Z}_5 . Indeed $\mathcal{X} \to \operatorname{Spec} \mathbb{Z}_5$ is flat (by proposition 2.5), and locally of finite presentation. Further both fibres are geometrically regular.

The same equation also defines a smooth scheme over \mathbb{Q}_2 , but not over \mathbb{Z}_2 (since then the fibre over \mathbb{F}_2 is singular).

One can generalise this definition of good reduction to the setting of global fields. However, via completion at primes, it is clear that it is in essence a local problem.

4 The criterion of Néron-Ogg-Shafarevich

The criterion of Néron-Ogg-Shafarevich provides us with an alternative for testing whether an elliptic curve (or more general an abelian variety) has good reduction at a certain prime. We give the statement in a local setting. But before we proceed we give a proper (pun unintended) definition of an elliptic curve.

- **4.1 Definition.** Let *S* be a scheme. An *elliptic curve over S* is a morphism $E \rightarrow S$ that is proper, smooth and with geometrically connected fibres all curves of genus 1, together with a fixed section $0 \in E(S)$.
- **4.2 Remark.** A couple of non-trivial facts, that 'should' be true, and indeed are true.
 - One can show that $E \rightarrow S$ is projective.
 - There is still a Weierstrass equation for *E*.
 - For every *S*-scheme *T* the set E(T) is a group in a functorial way.

~

We now restrict our attention to the case of local fields. Let *k* be a local field, with valuation *v*, and valuation ring $(A, \mathfrak{m}, \kappa)$. Further *l* denotes a separable closure of *k*, and *G* the Galois group $\operatorname{Gal}(l/k)$. Let $I \subset G$ be the inertia group. For any integer *n* we denote with E_n the subgroup of *n*-torsion points in E(l). Let ℓ be a prime number different from char κ .

- **4.3 Definition.** An elliptic curve E/k is said to have *good reduction* at v if there exists an elliptic curve \mathcal{E}/A such that the generic fibre \mathcal{E}_k is isomorphic to E/k.«
- **4.4 Remark.** There is a subtle difference with the general definition of good reduction, since we also need an extension of the zero section.
- **4.5 Definition.** Let *X* be a set equipped with a *G*-action. We call *X unramified at* v if *I* acts trivially on *X*, i.e., *I* is contained in the kernel of $G \rightarrow Aut(X)$.

We can now formulate the celebrated criterion.

- **4.6 Theorem.** The following are equivalent:
- 1. E has good reduction at v;
- 2. E_n is unramified at v for all n coprime to char κ ;
- 3. E_n is unramified at v for infinitely many n coprime to char κ ;

Proof. For a proof of the elliptic curve case, see [4]. The general case of abelian varieties is proven in [3]. \Box

References

- Peter Bruin. Smooth morphisms. URL: user.math.uzh.ch/bruin/smooth. pdf.
- [2] Qing Liu. *Algebraic Geometry and Arithmetic Curves*. Trans. by R.Q. Erne. Oxford Graduate Texts in Mathematics. OUP Oxford, 2006.
- [3] Jean-Pierre Serre and John Tate. "Good reduction of abelian varieties". In: *Ann. of Math.* (2) 88 (1968), pp. 492–517. ISSN: 0003-486X. JSTOR: 1970722.
- [4] Joseph H. Silverman. *The Arithmetic of Elliptic Curves*. Graduate Texts in Mathematics. Springer, 2010. ISBN: 9781441918581.