
Gabber’s lemma
by J.M. Commelin Tuesday, the 24th of November, 2015

1 Tempered dream
Let k be a number field. The following lemma would take us a long way towards our end goal: a proof
of the Tate, Shafarevich and Mordell conjectures.

1.1 Lemma. — Leth andд be integers. Letm be an integer divisible by two different primes ≥ 3. There exists
only finitely many isomorphism classes of principally polarizedд-dimenstional abelian varieties (A,Θ) over
k , equipped with level-m structure ε : (Z/mZ)2д

∼−→ A[m], and hFal (A) ≤ h. «
Note that this lemma is still a long way from our Big Dream, because we would need to get rid of

the level structure and polarisation. I will not touch on those issues here.

2 Problem
Let M be the moduli space of such abelian varieties. If M had a projective compactification M̄ , with a
line bundle L, such that hFal (A) ∼ hM̄,L (A), we would win.

However, as we know by now, we are not so lucky, and even if M̄ and L exist, we cannot compare
the Faltings height to hM̄,L .

The main problem is that we do not have a good modular interpretation of compactifications M̄ .
In particular, there is not a universal semi-abelian scheme over any such M̄ . That would more or less
amount to a generalisation of the semistable reduction theorem to higher-dimensional base schemes
(dvr’s and Dedekind schemes are 1-dimensional).

2.1 Theorem (Semistable reduction theorem). — Let R be a discrete valuation ring. Let K be the field
of fractions of R. Let A be an abelian variety over K . There exists a finite separable extension K ′/K , such
that for the R-finite integral closure R′ of R in K ′ the base change AK ′ extends to a semi-abelian scheme
over Spec(R′). «

3 Workaround
The goal of today is to prove Gabber’s lemma, which is a technical tool that provides us with sufficient
leeway to prove the desired properties of the Faltings height.

Gabber’s lemma may really be thought of as an analogue of theorem 2.1 to higher-dimensional base
schemes, though it is not a formal generalisation of theorem 2.1.

3.1 Theorem (Gabber’s lemma). — Let S be a noetherian scheme. Let f : X → S be a separated map of
finite type. Let u : A→ X be an abelian scheme.

There exists a proper surjection π : X ′ → X , and an open immersion j : X ′ → X̄ ′ into a proper S-scheme
such that the pullback AX ′ → X ′ extends to a semi-abelian scheme over X̄ ′.

A AX ′ A′

X X ′ X̄ ′

S

u uX ′ ū

f

π j

f̄ ′

(In the diagram both squares are cartesian; π is a proper surjection; j is an open immersion; f̄ ′ is proper;
and ū is a semi-abelian scheme.) «
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4 A crucial tool: the analogue for curves
In one line, the main idea in the proof of Gabber’s lemma is: reduce to the analogous statement for
curves, using the fact that every abelian scheme is the quotient of the Picard scheme of a curve. So, let
us now formulate and prove this analogous statement for curves.
4.1 Theorem. — Let S be a noetherian scheme. Let f : X → S be a separated map of finite type. Let
u : C → X be a smooth proper map whose geometric fibres are connected curves of genus ≥ 2.

There exists a proper surjection π : X ′ → X , and an open immersion j : X ′ → X̄ ′ into a proper S-scheme
such that the pullback CX ′ → X ′ extends to a semistable curve over X̄ ′.

C CX ′ C ′

X X ′ X̄ ′

S

u uX ′ ū

f

π j

f̄ ′

(In the diagram both squares are cartesian; π is a proper surjection; j is an open immersion; f̄ ′ is proper;
and ū is a proper flat map whose geometric fibres are connected semistable curves.) «
(A semistable curve is a curve whose singularities are ordinary double points, and all whose rational
components meet the other components in at least 2 points.)

We will need some ingredients to prove theorem 4.1.
4.2 Lemma (Chow’s lemma). — Let S be a noetherian scheme. Let X → S be a separated S-scheme of
finite type. There exists a surjective proper map X ′ → X such that X ′ → S is quasi-projective.

Proof . What follows is more or less a verbatim copy of [Stacks, tag 02O2].
The scheme X has only finitely many irreducible components Say X = X1 ∪ . . . ∪ Xr is the decom-

position of X into irreducible components. Let ηi ∈ Xi be the generic point. For every point x ∈ X
there exists an affine open Ux ⊂ X which contains x and each of the generic points ηi . Since X is
quasi-compact, we can find a finite affine open covering X = U1 ∪ . . . ∪Um such that each Ui contains
η1, . . . ,ηr . In particular we conclude that the open U = U1 ∩ . . . ∩Um ⊂ X is a dense open. This and
the fact that theUi are affine opens covering X is all that we will use below.

Let X ∗ ⊂ X be the scheme theoretic closure of U → X . Let U ∗i = X ∗ ∩Ui . Note that U ∗i is a closed
subscheme ofUi . HenceU ∗i is affine. SinceU is dense in X the morphism X ∗ → X is a surjective closed
immersion. It is an isomorphism overU . Hence we may replace X by X ∗ andUi byU ∗i and assume that
U is scheme theoretically dense in X .

We can find an immersion ji : Ui → PniS for each i . We can find closed subschemes Zi ⊂ PniS such
that ji : Ui → Zi is a scheme theoretically dense open immersion. Note that Zi → S is proper. Consider
the morphism

j = (j1 |U , . . . , jn |U ) : U −→ Pn1

S ×S . . . ×S P
nn
S .

We can find a closed subscheme Z of Pn1

S ×S . . . ×S P
nn
S such that j : U → Z is an open immersion

and such that U is scheme theoretically dense in Z . The morphism Z → S is proper. Consider the ith
projection

pri |Z : Z −→ PniS .
This morphism factors through Zi . Denote pi : Z → Zi the induced morphism. This is a proper
morphism. At this point we have that U ⊂ Ui ⊂ Zi are scheme theoretically dense open immersions.
Moreover, we can think of Z as the scheme theoretic image of the “diagonal” morphism

U → Z1 ×S . . . ×S Zn .
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SetVi = p−1i (Ui ). Note that pi |Vi : Vi → Ui is proper. Set X ′ = V1 ∪ . . . ∪Vn . By construction X ′ has
an immersion into the scheme Pn1

S ×S . . . ×S P
nn
S . Thus by the Segre embedding we see that X ′ has an

immersion into a projective space over S .
We claim that the morphisms pi |Vi : Vi → Ui glue to a morphism X ′ → X . Namely, it is clear that

pi |U is the identity map from U to U . Since U ⊂ X ′ is scheme theoretically dense by construction, it is
also scheme theoretically dense in the open subscheme Vi ∩Vj . Thus we see that pi |Vi∩Vj = pj |Vi∩Vj as
morphisms into the separated S-scheme X . We denote the resulting morphism π : X ′ → X .

We claim that π−1 (Ui ) = Vi . Since π |Vi = pi |Vi it follows that Vi ⊂ π−1 (Ui ). Consider the diagram

Vi π−1 (Ui )

Ui

pi |Vi

Since Vi → Ui is proper we see that the image of the horizontal arrow is closed. Since Vi ⊂ π−1 (Ui ) is
scheme theoretically dense (as it containsU ) we conclude that Vi = π−1 (Ui ) as claimed.

This shows that π−1 (Ui ) → Ui is identified with the proper morphism pi |Vi : Vi → Ui . Hence we see
that X has a finite affine covering X = ∪Ui such that the restriction of π is proper on each member of
the covering. We conclude that π is proper. □
4.3 Lemma. — Let S be a noetherian scheme. Let X be an S-scheme of finite type. Let U ⊂ X be a dense
open subscheme. Let f : U → Y be a morphism of S-schemes. Assume Y is proper.

There exists a proper surjective morphism π : X ′ → X , a morphism f̄ : X ′ → Y of S-schemes, such that
f̄ |π −1 (U ) = f ◦ π |π −1 (U ) .

Proof . Consider the composition

U −→ U ×S Y −→ X ×S Y ,

and call the schematic closure of the imageX ′. Observe that f̄ : X ′ → Y extends f in the required sense.
Moreover, π : X ′ → X is proper, since X ×S Y is proper. Since π is an isomorphism aboveU , the map π
is dominant, hence surjective. □

Proof (of theorem 4.1). Superficially, the previous two lemmata immediately give theorem 4.1. The only
problem is that suddenly algebraic stacks pop out their heads. But we will be courageous and ignorant,
and wave our hands about important details.

By lemma 4.2, we may assume that X is quasi-projective over S . Let j : X → X̄ be a dense open
immersion into a projective scheme over S . WriteMS forMд×Spec(Z)S . The curveu : C → X corresponds
with a morphism of S-stacks

u : X −→ MS

By a stacky version of lemma 4.3, we may find a proper surjective map X̄ ′ → X̄ , and a morphism of S-
stacks X̄ ′ →Mд ×Spec(Z) S , extending u. In other words, we find a semistable ū : C ′ → X̄ ′, as requested.
The only problem is that C ′ is a proper DM-stack over S , instead of a proper scheme over S . However,
this is solved by the next lemma. □

4.4 Lemma (Chow’s lemma for DM-stacks). — Let S be a noetherian scheme. LetM be a separated DM-
stack over S , of finite type. There exists a quasi-projective S-scheme X , and a proper surjective S-morphism
X → M . Moreover,M is proper over S if and only if X is projective over S .

Proof . This follows from corollaire 16.6.1 of [2]. The last statement follows from an inspection of the
proof of lemma 4.2. □
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5 Proof of Gabber’s lemma
With theorem 4.1 under our belt, we are in good shape to attack theorem 3.1. We will need a few more
tools, which we state (and sometimes prove) along the way. We start of with the following lemma due
to Faltings.
5.1 Lemma. — Let S be a normal noetherian scheme. LetU ⊂ S be a dense open subscheme. The restriction
functor from semi-abelian schemes over S to semi-abelian schemes over U , given by A 7→ AU is fully
faithful. «

Proof (of theorem 3.1). First of all, we may assume that X is quasi-projective, using lemma 4.2. By re-
placing X with the disjoint union of its irreducible components, we see that it suffices to prove the
theorem for irreducible X . We may also assume that X is reduced, hence integral.

We may even reduce the entire problem to the case where S is of finite type over Spec(Z), since all
input is of finite presentation over S , and S is a limit of schemes of finite type over Spec(Z). (This feels a
bit shaky, but we only need the case where S is of finite type over Spec(Z) anyway.) This reduces us to
the case where S is excellent, which implies that the normalisation map X̃ → X is finite. (Sadly, I have
no reference for this statement, other then Brian Conrad’s claim in his notes on Gabber’s lemma [1].)
In the end, we may assume that X is normal; hence we can apply lemma 5.1.

To prove theorem 3.1, we proceed as follows. Let η be the generic point of X . Let Bη be an abelian
scheme such that Aη × Bη is isogenous to the Jacobian of a smooth, proper, geometrically connected
curve of genusд ≥ 2 overη. (This can always be done!) Since η is the generic point, there is a dense open
U ⊂ X , and an abelian scheme BU with generic fibre Bη , and a curve (smooth, proper, geometrically
connected fibres of genus д) CU such that

Pic0CU /U → AU × BU
is an isogeny of abelian schemes overU .

By theorem 4.1, there is a proper surjection X ′ → X and an open immersion X ′ → X̄ ′ such that
C ′ extends to a proper semistable curve C̄ ′ over X̄ ′, where C ′ is the pullback of CU to U ′ = U ×X X ′.
By another proper surjective base change, we may assume that X̄ ′ is normal. In the end, the abelian
scheme (Pic0CU /U )U ′ extends to a semi-abelian scheme Pic0C̄ ′/X̄ ′ over X̄

′. Except that there is one catch:
why is Pic0C̄ ′/X̄ ′ a scheme? Well, it turn out that it is (in the case of proper semistable curves) by results
of Deligne and Raynaud.

Write J for Pic0C̄ ′/X̄ ′ . By construction JU ′ → AU ′ × BU ′ is an isogeny of abelian schemes. If we show
that this implies that AU ′ extends to X̄ ′, then we win. This is the content of the next lemmata. □

5.2 Lemma. — Let X be a noetherian scheme. Let U ⊂ X be an open subscheme. Let J → X be a semi-
abelian scheme. Assume JU is an abelian scheme. Let f : JU → J ′ be an isogeny of abelian schemes over
U .

There exists a proper surjective morphism X ′ → X , such that the pullback J ′U ′ (where U
′ = U ×X X ′)

extends to a semi-abelian scheme over X ′.

Proof . By another one of those proper surjective base changes, we may assume that X is normal and
integral. If U is empty, then f is an isomorphism, so the lemma is trivial. Thus assume that U is not
empty, and therefore dense.

Let H denote ker( f ). Note that H is a finite flat closed subgroup scheme of JU overU (because f is
an isogeny of abelian schemes f is flat above each point ofU and JU is flat overU , hence we can apply
the fibrewise criterion for flatness). We try to extend H to a quasi-finite flat closed subgroup scheme of
J over X (up to proper surjective base change).

By a special case of the hard and deep theorem 5.2.2 of [3], there exists a proper surjection X ′ → X
that is an isomorphism above U , such that the flat closed subscheme H ⊂ JU extends to a flat closed
subscheme G ⊂ JX ′ . Replace X by X ′, and assume again that X ′ is normal and integral.
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We have now arranged thatG is flat over X , which is crucial. It follows immediately thatG is quasi-
finite over X . Moreover, since X is integral, and J is separated over X , the 0-section X → J factors via
G, because it does so over the dense open U . Similarly, G is closed under inversion. Note that G ×X G
is flat over X , and therefore the Zariski closure H ×U H (which is flat overU ) in J ×X J . HenceG is also
closed under multiplication. We conclude that G is a quasi-finite flat closed subgroup scheme of J over
X .

We will now prove that J/G is a semi-abelian scheme extending J ′ to X . Since H ⊂ JU [n] for some
n, we may conclude that G ⊂ J [n].

By work of Artin, the quotient J/G is a smooth separated algebraic space over X . Now consider the
map J/G → J/J [n]. This map is quasi-finite and separated (because everything in sight is separated).
Since [n] : J → J is an fppf cover, we get a short exact sequence of abelian sheaves for the fppf-topology:

0 −→ J [n] −→ J
[n]
−→ J −→ 0

This shows that J/J [n] is a scheme. We win because algebraic spaces that are separated and quasi-finite
over schemes are themselves schemes. □

5.3 Lemma. — Let X be a connected normal noetherian scheme. LetU ⊂ X be a dense open subscheme. Let
J → X be a semi-abelian scheme. Assume JU � A1 ×A2 for abelian schemes A1 and A2 overU .

The abelian schemes Ai extend as semi-abelian schemes to X .

Proof . Let e ∈ EndU (JU ) be the idempotent projecting onto A1. By lemma 5.1, e extends to an idem-
potent endomorphism ē of J . It follows at once from Yoneda that Ā1 = ker(ē ) and Ā2 = ker(1 − ē ) are
subgroup schemes of J such that J = Ā1 × Ā2.

The geometric fibres of the Āi are semi-abelian varieties by lemma 5.4. Hence we are done if we
prove that Āi is smooth over X . Note that Āi is a closed subgroup scheme of J , hence Āi is locally of
finite presentation over X . Since J is smooth, the map J (R) → J (R/I ) will always be surjective for each
pair (R, I ) where R is a ring, with a map Spec(R) → X , and I ⊂ R is an ideal with I2 = 0. But then the
map Āi (R) → Āi (R/I ) is also surjective, since J (T ) � Ā1 (T ) × Ā2 (T ) is a product of non-empty sets (we
always have a 0-section), for each test object T → X . We conclude that the Āi are indeed smooth over
X . □

5.4 Lemma. — Let k be an algebraically closed field. Let 1 → G ′ → G → G ′′ → 1 be a short exact
sequence of smooth group schemes over k . The group schemes G ′ and G ′′ are semi-abelian if and only if G
is semi-abelian.

Proof . By a theorem of Chevalley, a smooth group scheme over k decomposes as

1→ Gaff → G → G/Gaff → 1,

where Gaff is an affine group scheme, and the quotient G/Gaff is an abelian variety. Hence G is semi-
abelian if and only ifGaff is a torus. Moreover, smooth affine group schemes over k = k̄ are products of
tori and unipotent groups.

The lemma is now immediate. Indeed Gaff surjects onto (G ′′)aff, so the latter may only have a non-
trivial unipotent factor if the former has as well. IfG ′′ is semi-abelian, andG is not, then the unipotent
part of Gaff is in the kernel of G → G ′′. Hence (G ′)aff contains a unipotent part. □
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