Finite group schemes

Johan M. Commelin

October 27, 2014

Contents

1	References	1
2	Examples	2
	2.1 Examples we have seen before	. 2
	2.2 Constant group schemes	
	2.3 Kernel of a homomorpism of group schemes	
	2.4 Multiplication by n	
	2.5 Semidirect product of group schemes	
3	Étale schemes over fields	4
	3.1 Étale morphisms	. 4
	3.2 Étale group schemes over fields	
4	Standard constructions	6
	4.1 Connected component of the identity	. 6
	4.2 Component scheme	. 7
	4.2.1 Component group	. 7
	4.3 Reduced group scheme	
5	Characteristic 0 group schemes are smooth	8
6	Cartier duality for finite commutative group schemes 6.1 Hopf algebras	8 . 9
7	Exercises	10

1 References

- The main reference is §3 of the manuscript of Moonen and his coauthors.
- For some useful facts on connected (resp. reduced) schemes, see EGA IV.
- If you are hardcore, the most general version of any statement about group schemes can be found in SGA3.

2 Examples

2.1 Examples we have seen before

Let S be a scheme. We recall some examples of group schemes you have already seen.

• The group scheme $\mathbb{G}a_S$ is defined by the functor

$$\begin{array}{ccc} \mathbb{G}a_S \colon \operatorname{Sch}_{/S}^{\operatorname{op}} \longrightarrow & \operatorname{Grp} \\ T \longmapsto & (\mathcal{O}_T(T), +) \end{array}$$

It is represented by the scheme $\mathbb{A}^1 \times S = \operatorname{Spec}(\mathbb{Z}[X]) \times S$. If S is affine, say $\operatorname{Spec}(A)$, then $\mathbb{G}a_S \cong \operatorname{Spec}(A[X])$.

• The group scheme $\mathbb{G}m_S$ is defined by the functor

$$\begin{aligned}
 \mathbb{G}\mathrm{m}_S \colon & \mathrm{Sch}_{/S}^{\mathrm{op}} \longrightarrow & \mathrm{Grp} \\
 T \longmapsto & \mathcal{O}_T(T)
 \end{aligned}$$

It is represented by the scheme $\mathbb{G}m_{\mathbb{Z}} \times S = \operatorname{Spec}(\mathbb{Z}[X, X^{-1}]) \times S$. If S is affine, say $\operatorname{Spec}(A)$, then $\mathbb{G}m_S \cong \operatorname{Spec}(A[X, X^{-1}])$.

If $S' \to S$ is a morphism of schemes, then $\mathbb{G}a_{S'} \cong \mathbb{G}a_S \times_S S'$ and $\mathbb{G}m_{S'} \cong \mathbb{G}m_S \times_S S'$. This is immediate from the way we gave the representing schemes in the above examples.

These examples naturally lead to the definition of the following subgroup schemes.

• The subgroup scheme $\mu_{n,S} \subset \mathbb{G}m_S$ is defined by the functor

$$\mu_{n,S} \colon \operatorname{Sch}_{/S}^{\operatorname{op}} \longrightarrow \operatorname{Grp} \\ T \longmapsto \{ x \in \mathcal{O}_T(T)^* \mid x^n = 1 \}$$

It is represented by $\operatorname{Spec}(\mathbb{Z}[X]/(X^n-1)) \times S$.

• Assume the characteristic of S is a prime p > 0. (In other words, $\mathcal{O}_S(S)$ is a ring of characteristic p; or equivalently, $S \to \operatorname{Spec}(\mathbb{Z})$ factors via $\operatorname{Spec}(\mathbb{F}_p)$.) The subgroup scheme $\alpha_{p^n,S} \subset \operatorname{Ga}_S$ is defined by the functor

$$\begin{array}{rcl} \alpha_{p^n,S} \colon \operatorname{Sch}_{/S}^{\operatorname{op}} &\longrightarrow & \operatorname{Grp} \\ & T &\longmapsto & \{ x \in \mathcal{O}_T(T)^* \mid x^{p^n} = 0 \} \end{array}$$

It is represented by $\operatorname{Spec}(\mathbb{Z}[X]/(X^p)) \times S$.

In a moment we will see that $\mu_{n,S}$ and $\alpha_{p^n,S}$ are examples of kernels.

Example 1 Observe that if we forget the group structures, then $\mu_{p^n,S}$ and $\alpha_{p^n,S}$ represent the same functor. Indeed, they are fibres of the same homomorphism of rings. However, as group schemes they are not isomorphic.

2.2 Constant group schemes

Let G be an abstract group. We associate a group scheme with G, the so called *constant group scheme* G_S . It is defined by the functor

$$\begin{array}{rcl} G_S \colon \operatorname{Sch}_{/S}^{\operatorname{op}} & \longrightarrow & \operatorname{Grp} \\ T & \longmapsto & G^{\pi_0(T)} \end{array}$$

It is represented by $\coprod_{q \in G} S$. Indeed, if T is connected,

$$\operatorname{Hom}_{S}(T, \coprod_{g \in G} S) = G_{S}(T)$$

because T must be mapped to exactly one copy of S, and the mapping must be the structure morphism $T \to S$. For general T, the identity follows from abstract nonsense:

$$\operatorname{Hom}(\coprod_{i\in I}T_i,X)=\prod_{i\in I}\operatorname{Hom}(T_i,X)$$

Example 2 Let k be a field of characteristic p. Let n be an integer that is not divisible by p. In general $(\mathbb{Z}/n\mathbb{Z})_k$ and $\mu_{n,k}$ are not isomorphic. However, if k contains a primitive n-th root of unity (for example if k is algebraically closed), then $(\mathbb{Z}/n\mathbb{Z})_k \cong \mu_{n,k}$.

We say that μ_n is a *form* of the constant group scheme $(\mathbb{Z}/n\mathbb{Z})_k$. Later on we hope to see that, if k is a field of characteristic 0, then every finite group scheme over k is a form of a constant group scheme. Moreover, if k is algebraically closed, then every finite group scheme is constant.

2.3 Kernel of a homomorpism of group schemes

Let $f: G \to H$ be a homomorphism of group schemes over some scheme S. The kernel subgroup scheme $\text{Ker}(f) \subset G$ is defined via the functor

$$\begin{array}{rcl} \operatorname{Ker}(f) \colon & \operatorname{Sch}_{/S}^{\operatorname{op}} \longrightarrow & \operatorname{Grp} \\ & T \longmapsto & \operatorname{Ker}(G(T) \to H(T)) \end{array}$$

This functor is representable, because it is a pullback

$$\begin{array}{ccc} \operatorname{Ker}(f) & \longrightarrow G \\ & & & \downarrow^{f} \\ S & \stackrel{1}{\longrightarrow} H \end{array}$$

Note that μ_n is the kernel

$$[n] \colon \mathbb{G}\mathbf{m} \longrightarrow \mathbb{G}\mathbf{m} \\ x \longmapsto x^n$$

and similarly α_{p^n} is the kernel of Frobenius

$$\begin{array}{rcl} \operatorname{Frob}_p \colon & \mathbb{G}\mathrm{a} \longrightarrow & \mathbb{G}\mathrm{a} \\ & x \longmapsto & x^{p^n} \end{array}$$

2.4 Multiplication by *n*

Let S be a scheme. Let G/S be a commutative group scheme over S. For every non-negative integer $n \in \mathbb{Z}_{\geq 0}$ there is a group scheme homomorphism "multiplication by n" given by

$$\begin{array}{cccc} [n] \colon & G \longrightarrow & G \\ & x \longmapsto & n \cdot x \end{array}$$

(Here we use additive notation for G.)

The kernel of this morphism is usually denoted G[n]. Note that we can define μ_n as $\mathbb{Gm}[n]$.

2.5 Semidirect product of group schemes

Let N and Q be two group schemes over a basis S. Let

$$\begin{array}{ccc} \mathbf{Aut}(N) \colon & \mathrm{Sch}_{/S}^{\mathrm{op}} \longrightarrow & \mathrm{Grp} \\ & T \longmapsto & \mathrm{Aut}(N_T) \end{array}$$

denote the automorphism functor of N. (By the way, with $\operatorname{Aut}(N_T)$ we mean automorphisms of N_T as group scheme!) Let $\rho: Q \to \operatorname{Aut}(N)$ be an action of Q on N.

The semi-direct product group scheme $N \rtimes_{\rho} Q$ is defined by the functor

$$\begin{array}{rcl} N\rtimes_{\rho}Q\colon \operatorname{Sch}^{\operatorname{op}}_{/S} \longrightarrow & \operatorname{Grp}\\ & T\longmapsto & N(T)\rtimes_{\rho_{T}}Q(T) \end{array}$$

which is represented by $N \times_S Q$. Recall that if (n,q) and (n',q') are *T*-valued points of $N \rtimes_{\rho} Q$, then

$$(n,q) \cdot (n',q') = (n \cdot \rho(q)(n'), q \cdot q').$$

3 Étale schemes over fields

3.1 Étale morphisms

We now give two definition of étale morphisms; but we do not show that they are equivalent.

Definition 1 A morphism of schemes $X \to S$ is *étale* if it is flat and unramified.

Observe that

- $X \to \operatorname{Spec}(k)$ is always flat (trivial);
- $X \to \operatorname{Spec}(k)$ is unramified if it is locally of finite type and if for all $x \in X$ the ring map $k \to \mathcal{O}_{X,x}$ is a finite separable field extension.

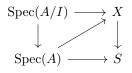
Definition 2 A morphism of schemes $X \to S$ is formally étale if for every

- commutative ring A,
- and every ideal $I \subset A$, such that $I^2 = 0$,

• and every commutative square

$$\begin{array}{ccc} \operatorname{Spec}(A/I) & \longrightarrow X \\ & & \downarrow \\ & & \downarrow \\ \operatorname{Spec}(A) & \longrightarrow S \end{array}$$

there exists precisely one map $\operatorname{Spec}(A) \to X$ such that



commutes.

Proposition 1 A morphism of schemes $X \to S$ is étale if and only if it is locally of finite presentation and formally étale.

Example 3 In other words, a group scheme G/k over a field k is étale if for every k-algebra A, and every ideal $I \subset A$ with $I^2 = 0$, the map $G(A) \to G(A/I)$ is a bijection.

We now specialise to the case S = Spec(k), with k a field. Fix a separable closure \bar{k} of k.

Theorem 1 The functor

$$\{ \acute{et. sch. over } k \} \longrightarrow \{ disc. ctu. \ \mathrm{Gal}(\bar{k}/k) \text{-sets} \} \\ X \longmapsto X(\bar{k})$$

is an equivalence of categories.

PROOF Every discrete $\operatorname{Gal}(\bar{k}/k)$ -set is a disjoint union of orbits. Every orbit is stabilised by a finite index subgroup $H \subset \operatorname{Gal}(\bar{k}/k)$. The orbit corresponds to $\operatorname{Spec}(\bar{k}^H)$.

Conversely, every étale scheme over k is the disjoint union of its connected components; and every connected étale scheme over k is a field extension.

3.2 Étale group schemes over fields

The theorem allows us to describe étale group schemes over k as group objects in the category of discrete $\operatorname{Gal}(\bar{k}/k)$ -sets. In other words, a étale group scheme G/k is fully described by

- the group $G(\bar{k})$, together with
- the action of $\operatorname{Gal}(\overline{k}/k)$ on $G(\overline{k})$.

Vice versa, every group discrete G together with a continuous action of $\operatorname{Gal}(\overline{k}/k)$ acting via automorphisms of G (or equivalently, such that the multiplication $G \times G \to G$ is Galois equivariant) determines a étale group scheme over k.

4 Standard constructions

Let G be a finite (hence affine) k-group scheme. By the rank of G we mean the k-dimension of its affine algebra $\mathcal{O}_G(G)$. For example, $\mu_{p,k}$, $\alpha_{p,k}$ and $(\mathbb{Z}/p\mathbb{Z})_k$ all have rank p.

4.1 Connected component of the identity

Let G/k be a group scheme over some field k. Let G^0 denote the connected component of G that contains e. One expects that G^0 is a subgroup scheme of G. This is indeed true. One needs to prove that the image of $G^0 \times_k G^0 \subset G \times_k G$ under the multiplication map $m \colon G \times_k G \to G$ is contained in G^0 .

We are done if $G^0 \times_k G^0$ is connected.

In general, if $X \to S$ and $Y \to S$ are S-schemes, and X and Y are connected, then $X \times_S Y$ need not be connected. For example take \mathbb{C}/\mathbb{R} for X/S and Y/S. However, we have a rational point $e \in G^0(k)$ at our disposal.

Lemma 1 Let X/k be a k-scheme that is locally of finite type. Assume X is connected and has a rational point $x \in X(k)$. Then X is geometrically connected.

PROOF Let L/k be a field extension. It suffices to show that the projection $p: X_L \to X$ is open and closed. The properties of being open and closed are local on the target. In other words, if $(U_i)_{i \in I}$ is an affine cover of X, then $(p^{-1}(U_i))_{i \in I}$ covers X_L , and if every $p^{-1}(U_i) \to U_i$ is open and closed, then so is p. Note that $p^{-1}(U_i) = U_{i,L}$.

Hence we may assume that X is affine and of finite type. Let $Z \subset X_L$ be closed. Then there exists a field K, with $k \subset K \subset L$, and K/k finite, such that Z is defined over K. Concretely, there exists a $Z' \subset X_K$, such that $(Z')_L = Z$.

Thus, for every closed (and therefore, for every open) subset of X we have reduced the question to whether $X_K \to X$ is open and closed for finite extension K/k. But K/k is finite and flat, hence so is $X_K \to X$. But finite flat morphisms are open and closed (use HAG, Chap. III, Ex. 9.1 or EGA IV, Thm. 2.4.6.).

The lemma shows that G^0 is geometrically connected. This implies that $(G^0)_K = (G_K)^0$ for every field extension K/k.

Moreover, $G^0 \times_k G^0$ is connected, by http://stacks.math.columbia.edu/tag/0385. It follows that G^0 carries a subgroup scheme structure.

Together, we have proved parts of the following theorem.

Theorem 2 (Parts of proposition 3.17 from the manuscript) Let G be a group scheme, locally of finite type over a field k.

- (i) The identity component G^0 is an open and closed subgroup scheme of G that is geometrically irreducible. In particular: for any field extension $k \subset K$, we have $(G^0)_K = (G_K)^0$.
- (ii) The following properties are equivalent:
 - (a1) $G \times_k K$ is reduced for some perfect field K containing k;
 - (a2) the ring $\mathcal{O}_{G,e} \otimes_k K$ is reduced for some perfect field K containing k;
 - (b1) G is smooth over k;
 - (b2) G^0 is smooth over k;

(b3) G is smooth over k at the origin.

PROOF The lemma gives us most of (i).

The flavour for most of (ii) can be grabbed from http://stacks.math. columbia.edu/tag/04QM. Indeed (a1) \implies (a2) and (b1) \implies (b2) \implies (b3) are trivial.

Example 4 (i) Let k be a non-perfect field. Let $\alpha \in k$ be an element that is not a p-th power. Observe that $G = \operatorname{Spec}(k[X,Y]/(X^p + \alpha Y^p))$ is a closed subgroup scheme of \mathbb{A}_k^2 . It is reduced, but not geometrically reduced, hence not smooth. (ii) Consider $\mu_{n,\mathbb{Q}}$, for n > 2. The connected component of the identity is geometrically irreducible (as the theorem says) but all other components split into more components after extending to $\overline{\mathbb{Q}}$.

4.2 Component scheme

Let k be a field. Let X/k be a scheme, locally of finite type.

The inclusion functor

$$\{\text{\acute{e}t } k \text{-schemes}\} \longrightarrow \{\text{loc. fin. type } \text{Sch}_{/k}\}$$

admits a left adjoint

 $\varpi_0: \{ \text{loc. fin. type Sch}_k \} \longrightarrow \{ \text{\'et } k \text{-schemes} \}$

In other words, every morphism $X \to Y$ of k-schemes, with Y/k étale, factors uniquely via $X \to \varpi_0(X)$.

To understand what $\varpi_0(X)$ is, we use our description of étale k-schemes.

Fix a separable closure \bar{k}/k . Observe that $\operatorname{Gal}(\bar{k}/k)$ acts on $\operatorname{Spec}(\bar{k})$, hence on, $X_{\bar{k}} = X \times_k \operatorname{Spec}(\bar{k})$, hence on the topological space underlying X_k , hence on $\pi_0(X_{\bar{k}})$.

The claim is then, that this action is continuous. Indeed, every connected component $C \in \pi_0(X_{\bar{k}})$ is defined over some finite extension $k' \subset \bar{k}$ of k, and therefore the stabiliser of C contains the open subgroup $\operatorname{Gal}(\bar{k}/k')$. (See the manuscript §3.27 for details.) The étale k-scheme associated with this action is $\varpi_0(X)$.

This shows that ϖ_0 is a functor, as claimed. It is the identity on étale *k*-schemes. Consequently, every map $X \to Y$ to an étale scheme induces a map $\varpi_0(X) \to Y$.

There is an obvious map $X_{\bar{k}} \to \varpi_0(X_{\bar{k}})$. This map is $\operatorname{Gal}(\bar{k}/k)$ -equivariant, and therefore we get a map $X \to \varpi_0(X)$. The fibers of this map are precisely the connected components of X (as open subschemes of X).

4.2.1 Component group

Let G/k be a group scheme, locally of finite type. Since $G^0 \subset G$ is a normal subgroup scheme, there is a natural group scheme structure on $\varpi_0(G)$. In particulare we get the following short exact sequence of group schemes.

$$1 \mapsto G^0 \to G \to \varpi_0(G) \to 1$$

4.3 Reduced group scheme

Let k be a field. Let G/k be a group scheme. Let G_{red} be the underlying reduced scheme of G.

It is natural to ask if G_{red} is carries a natural group scheme structure over k. In general the answer is no.

However, if we assume k is perfect, the answer is yes. Since G_{red} is reduced, it is smooth (the theorem on connected components), and therefore geometrically reduced (again the theorem). By EGA IV 4.6.1, this implies that $G_{\text{red}} \times_k G_{\text{red}}$ is reduced, and therefore is mapped to G_{red} under the multiplication map $G \times_k G \to G$.

In general $G_{\text{red}} \subset G$ is not normal! See exercise 3.2 from the manuscript. For more information about (possibly) surprising behaviour, one can take a look at http://mathoverflow.net/questions/38891/is-there-a-connected-kgroup-scheme-g-such-that-g-red-is-not-a-subgroup and the following example by Laurent Moret-Bailly:

Over a field of characteristic p > 0, take for G the semidirect product $\alpha_p \rtimes \mathbb{G}m$ where $\mathbb{G}m$ acts on α_p by scaling. Then G is connected but $G_{red} = \{0\} \times \mathbb{G}m$ is not normal in G.

Example copied from: http://mathoverflow.net/questions/161604/isg-operatornamered-normal-in-g?rq=1

5 Characteristic 0 group schemes are smooth

Let k be a field of characteristic 0. Let G/k be a group scheme that is locally of finite type.

Theorem 3 G is reduced, hence G/k is smooth.

PROOF See Theorem 3.20 of the manuscript for a proof.

This result has some nice consequences.

- If G/k is finite, then it is étale.
- If G/k if finite, and k is algebraically closed, G/k is a constant group scheme.
- If G/k is finite, then it is a form of a constant group scheme.

6 Cartier duality for finite commutative group schemes

We only present Cartier duality over fields. For a more general picture, see the manuscript §3.21 and further.

Let k be a field. Let G/k be a finite commutative group scheme. To G we can attach the functor

$$\begin{array}{ccc} G^D \colon \operatorname{Sch}^{\operatorname{op}}_{/S} \longrightarrow & \operatorname{Grp} \\ & T \longmapsto & \operatorname{Hom}_{\operatorname{Grp}_{/S}}(G_T, \mathbb{G}\mathrm{m}_T) \end{array}$$

If G is commutative, finite, then G^D is representable.

To see this, first remark that since G is finite over k, G is affine. We can thus study G, by studying its Hopf algebra.

6.1 Hopf algebras

I am not going to discuss Hopf algebras in the generality that mathematical physicists would do.

The category of affine k-schemes is dual to the category of k-algebras. Hence a group object in the former corresponds to a cogroup object in the latter.

In particular, for an algebra A we get the following data

unit (algebra structure map)	$e \colon k \to A$
multiplication	$m: A \otimes_k A \to A$

and if A is a Hopf algebra, we moreover have

co-unit (augmentation map)	$\tilde{e} \colon A \to k$
co-multiplication	$\tilde{m}: A \to A \otimes_k A$
co-inverse	$\tilde{i} \colon A \to A$

I am not going to spell out what it means for A to be a co-commutative Hopf algebra, but you will just have to dualize all diagrams for group objects.

On k-algebras, use $(_)^D$ as notation for the dualisation functor Hom $(_, k)$.

Lemma 2 Let A be a co-commutative Hopf algebra over k. The dual data $(A^D, \tilde{e}^D, \tilde{m}^D, e^D, m^D, \tilde{i}^D)$ specifies a co-commutative k-Hopf algebra.

PROOF Draw all the diagrams for a co-commutative Hopf algebra. Reverse all the arrows. Remark that nothing happened, up to a permutation.

We return to the group scheme G/k. Recall that it is commutative and finite. Hence the global sections $\mathcal{O}_G(G)$ form a co-commutative Hopf algebra.

Theorem 4 The Cartier dual G^D is represented by $\text{Spec}(A^D)$.

PROOF Let R be any k-algebra. We have to show that $G^{D}(R)$ is naturally isomorphic to $\operatorname{Hom}_{k}(\operatorname{Spec}(R), \operatorname{Spec}(A^{D}))$.

Observe that

$$G^{D}(R) = \operatorname{Hom}_{\operatorname{GrpSch}_{/R}}(G_{R}, \mathbb{Gm}_{R}) \subset \operatorname{Hom}_{R}(R[x, x^{-1}], A \otimes_{k} R).$$

On the other hand,

$$\operatorname{Hom}_{k}(\operatorname{Spec}(R), \operatorname{Spec}(A^{D})) \cong \operatorname{Hom}_{k}(A^{D}, R)$$
$$\cong \operatorname{Hom}_{R}(A^{D} \otimes_{k} R, R)$$
$$\cong \operatorname{Hom}_{R}(A \otimes_{k} R^{D}, R).$$

To make life easier, we now just write A for the R-Hopf algebra $A \otimes_k R$. So we want to prove that $\operatorname{Hom}_R(A^D, R)$ is canonically isomorphic to the subset of Hopf algebra homomorphisms of $\operatorname{Hom}_R(R[x, x^{-1}], A)$.

This latter subset is described as follows: A ring homomorphism f is determined by the image of x. It is a Hopf algebra homomorphism, precisely when $\tilde{m}(f(x)) = f(x) \otimes f(x)$.

So we get the set $\{a \in A^* \mid \tilde{m}(a) = a \otimes a\}$. From the diagrams for Hopf algebras, we see that if $a \in A$ satisfies $\tilde{m}(a) = a \otimes a$, then $\tilde{e}(a) \cdot a = a$, and $\tilde{i}(a) \cdot a = \tilde{e}(a)$. If $a \in A^*$, then $\tilde{e}(a) = 1$ by the first equation. If on the other hand $\tilde{e}(a) = 1$, then the second equation implies $a \in A^*$. Therefore

$$\{a \in A^* \mid \tilde{m}(a) = a \otimes a\} = \{a \in A \mid \tilde{m}(a) = a \otimes a \text{ and } \tilde{e}(a) = 1\}.$$

Reasoning from the other side, every R-module homomorphism $A^D \to R$ is an evaluation homomorphism

$$\begin{array}{ccc} \mathrm{ev}_a \colon \ A^D \longrightarrow \ R \\ \lambda \longmapsto \ \lambda(a) \end{array}$$

If we want ev_a to be a ring homomorphism, it should satisfy

$$\begin{aligned} & \text{ev}_a(1) = 1, & \text{i.e. } \text{ev}_a \circ \tilde{e}^D = \text{id} \\ & \text{ev}_a(\lambda \mu) = \text{ev}_a(\lambda) \text{ev}_a(\mu), & \text{i.e. } \text{ev}_a \circ \tilde{m}^D = \text{ev}_a \cdot \text{ev}_a. \end{aligned}$$

The first equation is equivalent with $\tilde{e}(a) = 1$. Indeed

$$\operatorname{ev}_a(\tilde{e}^D(\operatorname{id}_R)) = \tilde{e}(a).$$

The second equation demands

$$(\lambda \otimes \mu)(\tilde{m}(a)) = \lambda(a)\mu(a)$$

This is equivalent with $\tilde{m}(a) = a \otimes a$, which can be seen by letting λ and μ run through a dual basis of A.

Hence we are back at the set

$$\{a \in A \mid \tilde{m}(a) = a \otimes a \text{ and } \tilde{e}(a) = 1\}$$

which completes the proof.

7 Exercises

- (1) Show that μ_n/k is unramified if $n \in k^*$.
- (2) Show that μ_n/k is formally étale if $n \in k^*$.
- (3) Let k be a field of characteristic p. Give a k-algebra A, such that $\alpha_p(A)$ is not trivial.
- (4) Compute G^0 for $G = \mu_n/k$ (think about the characteristic of k).
- (5) Compute the Cartier dual of $(\mathbb{Z}/n\mathbb{Z})_k$ for $n \in k^*$.