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1 References

• The main reference is §3 of the manuscript of Moonen and his coauthors.

• For some useful facts on connected (resp. reduced) schemes, see EGA IV.

• If you are hardcore, the most general version of any statement about group
schemes can be found in SGA3.
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2 Examples

2.1 Examples we have seen before

Let S be a scheme. We recall some examples of group schemes you have already
seen.

• The group scheme GaS is defined by the functor

GaS : Schop
/S −→ Grp

T 7−→ (OT (T ),+)

It is represented by the scheme A1 × S = Spec(Z[X])× S. If S is affine,
say Spec(A), then GaS ∼= Spec(A[X]).

• The group scheme GmS is defined by the functor

GmS : Schop
/S −→ Grp

T 7−→ OT (T )∗

It is represented by the scheme GmZ × S = Spec(Z[X,X−1])× S. If S is
affine, say Spec(A), then GmS

∼= Spec(A[X,X−1]).

If S′ → S is a morphism of schemes, then GaS′ ∼= GaS ×S S′ and GmS′ ∼=
GmS ×S S′. This is immediate from the way we gave the representing schemes
in the above examples.

These examples naturally lead to the definition of the following subgroup
schemes.

• The subgroup scheme µn,S ⊂ GmS is defined by the functor

µn,S : Schop
/S −→ Grp

T 7−→ {x ∈ OT (T )∗ | xn = 1}

It is represented by Spec(Z[X]/(Xn − 1))× S.

• Assume the characteristic of S is a prime p > 0. (In other words, OS(S) is a
ring of characteristic p; or equivalently, S → Spec(Z) factors via Spec(Fp).)
The subgroup scheme αpn,S ⊂ GaS is defined by the functor

αpn,S : Schop
/S −→ Grp

T 7−→ {x ∈ OT (T )∗ | xpn = 0}

It is represented by Spec(Z[X]/(Xp))× S.

In a moment we will see that µn,S and αpn,S are examples of kernels.

Example 1 Observe that if we forget the group structures, then µpn,S and αpn,S
represent the same functor. Indeed, they are fibres of the same homomorphism
of rings. However, as group schemes they are not isomorphic.
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2.2 Constant group schemes

Let G be an abstract group. We associate a group scheme with G, the so called
constant group scheme GS . It is defined by the functor

GS : Schop
/S −→ Grp

T 7−→ Gπ0(T )

It is represented by
∐
g∈G S. Indeed, if T is connected,

HomS(T,
∐
g∈G

S) = GS(T )

because T must be mapped to exactly one copy of S, and the mapping must
be the structure morphism T → S. For general T , the identity follows from
abstract nonsense:

Hom(
∐
i∈I

Ti, X) =
∏
i∈I

Hom(Ti, X)

Example 2 Let k be a field of characteristic p. Let n be an integer that is not
divisible by p. In general (Z/nZ)k and µn,k are not isomorphic. However, if k
contains a primitive n-th root of unity (for example if k is algebraically closed),
then (Z/nZ)k ∼= µn,k.

We say that µn is a form of the constant group scheme (Z/nZ)k. Later on we
hope to see that, if k is a field of characteristic 0, then every finite group scheme
over k is a form of a constant group scheme. Moreover, if k is algebraically
closed, then every finite group scheme is constant.

2.3 Kernel of a homomorpism of group schemes

Let f : G→ H be a homomorphism of group schemes over some scheme S. The
kernel subgroup scheme Ker(f) ⊂ G is defined via the functor

Ker(f) : Schop
/S −→ Grp

T 7−→ Ker(G(T )→ H(T ))

This functor is representable, because it is a pullback

Ker(f) G

S H

f

1

Note that µn is the kernel

[n] : Gm −→ Gm
x 7−→ xn

and similarly αpn is the kernel of Frobenius

Frobp : Ga −→ Ga
x 7−→ xp

n
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2.4 Multiplication by n

Let S be a scheme. Let G/S be a commutative group scheme over S. For
every non-negative integer n ∈ Z≥0 there is a group scheme homomorphism
“multiplication by n” given by

[n] : G −→ G
x 7−→ n · x

(Here we use additive notation for G.)
The kernel of this morphism is usually denoted G[n].
Note that we can define µn as Gm[n].

2.5 Semidirect product of group schemes

Let N and Q be two group schemes over a basis S. Let

Aut(N) : Schop
/S −→ Grp

T 7−→ Aut(NT )

denote the automorphism functor of N . (By the way, with Aut(NT ) we mean
automorphisms of NT as group scheme!) Let ρ : Q→ Aut(N) be an action of
Q on N .

The semi-direct product group scheme N oρ Q is defined by the functor

N oρ Q : Schop
/S −→ Grp

T 7−→ N(T ) oρT Q(T )

which is represented by N ×S Q. Recall that if (n, q) and (n′, q′) are T -valued
points of N oρ Q, then

(n, q) · (n′, q′) = (n · ρ(q)(n′), q · q′).

3 Étale schemes over fields

3.1 Étale morphisms

We now give two definition of étale morphisms; but we do not show that they
are equivalent.

Definition 1 A morphism of schemes X → S is étale if it is flat and unramified.

Observe that

• X → Spec(k) is always flat (trivial);

• X → Spec(k) is unramified if it is locally of finite type and if for all x ∈ X
the ring map k → OX,x is a finite separable field extension.

Definition 2 A morphism of schemes X → S is formally étale if for every

• commutative ring A,

• and every ideal I ⊂ A, such that I2 = 0,
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• and every commutative square

Spec(A/I) X

Spec(A) S

there exists precisely one map Spec(A)→ X such that

Spec(A/I) X

Spec(A) S

commutes.

Proposition 1 A morphism of schemes X → S is étale if and only if it is
locally of finite presentation and formally étale.

Example 3 In other words, a group scheme G/k over a field k is étale if for
every k-algebra A, and every ideal I ⊂ A with I2 = 0, the map G(A)→ G(A/I)
is a bijection.

We now specialise to the case S = Spec(k), with k a field. Fix a separable
closure k̄ of k.

Theorem 1 The functor

{ét. sch. over k} −→ {disc. ctu. Gal(k̄/k)-sets}
X 7−→ X(k̄)

is an equivalence of categories.

Proof Every discrete Gal(k̄/k)-set is a disjoint union of orbits. Every orbit is
stabilised by a finite index subgroup H ⊂ Gal(k̄/k). The orbit corresponds to
Spec(k̄H).

Conversely, every étale scheme over k is the disjoint union of its connected
components; and every connected étale scheme over k is a field extension.

3.2 Étale group schemes over fields

The theorem allows us to describe étale group schemes over k as group objects
in the category of discrete Gal(k̄/k)-sets. In other words, a étale group scheme
G/k is fully described by

• the group G(k̄), together with

• the action of Gal(k̄/k) on G(k̄).

Vice versa, every group discrete G together with a continuous action of Gal(k̄/k)
acting via automorphisms of G (or equivalently, such that the multiplication
G×G→ G is Galois equivariant) determines a étale group scheme over k.

5



4 Standard constructions

Let G be a finite (hence affine) k-group scheme. By the rank of G we mean the
k-dimension of its affine algebra OG(G). For example, µp,k, αp,k and (Z/pZ)k
all have rank p.

4.1 Connected component of the identity

Let G/k be a group scheme over some field k. Let G0 denote the connected
component of G that contains e. One expects that G0 is a subgroup scheme of G.
This is indeed true. One needs to prove that the image of G0 ×k G0 ⊂ G×k G
under the multiplication map m : G×k G→ G is contained in G0.

We are done if G0 ×k G0 is connected.
In general, if X → S and Y → S are S-schemes, and X and Y are connected,

then X ×S Y need not be connected. For example take C/R for X/S and Y/S.
However, we have a rational point e ∈ G0(k) at our disposal.

Lemma 1 Let X/k be a k-scheme that is locally of finite type. Assume X is
connected and has a rational point x ∈ X(k). Then X is geometrically connected.

Proof Let L/k be a field extension. It suffices to show that the projection
p : XL → X is open and closed. The properties of being open and closed are
local on the target. In other words, if (Ui)i∈I is an affine cover of X, then
(p−1(Ui))i∈I covers XL, and if every p−1(Ui)→ Ui is open and closed, then so
is p. Note that p−1(Ui) = Ui,L.

Hence we may assume that X is affine and of finite type. Let Z ⊂ XL be
closed. Then there exists a field K, with k ⊂ K ⊂ L, and K/k finite, such that
Z is defined over K. Concretely, there exists a Z ′ ⊂ XK , such that (Z ′)L = Z.

Thus, for every closed (and therefore, for every open) subset of X we have
reduced the question to whether XK → X is open and closed for finite extension
K/k. But K/k is finite and flat, hence so is XK → X. But finite flat morphisms
are open and closed (use HAG, Chap. III, Ex. 9.1 or EGA IV, Thm. 2.4.6.).

The lemma shows that G0 is geometrically connected. This implies that
(G0)K = (GK)0 for every field extension K/k.

Moreover, G0 ×k G0 is connected, by http://stacks.math.columbia.edu/

tag/0385. It follows that G0 carries a subgroup scheme structure.
Together, we have proved parts of the following theorem.

Theorem 2 (Parts of proposition 3.17 from the manuscript) Let G be
a group scheme, locally of finite type over a field k.

(i) The identity component G0 is an open and closed subgroup scheme of G
that is geometrically irreducible. In particular: for any field extension
k ⊂ K, we have (G0)K = (GK)0.

(ii) The following properties are equivalent:

(a1) G×k K is reduced for some perfect field K containing k;

(a2) the ring OG,e ⊗k K is reduced for some perfect field K containing k;

(b1) G is smooth over k;

(b2) G0 is smooth over k;
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(b3) G is smooth over k at the origin.

Proof The lemma gives us most of (i).
The flavour for most of (ii) can be grabbed from http://stacks.math.

columbia.edu/tag/04QM. Indeed (a1) =⇒ (a2) and (b1) =⇒ (b2) =⇒ (b3)
are trivial.

Example 4 (i) Let k be a non-perfect field. Let α ∈ k be an element that
is not a p-th power. Observe that G = Spec(k[X,Y ]/(Xp + αY p) is a closed
subgroup scheme of A2

k. It is reduced, but not geometrically reduced, hence not
smooth. (ii) Consider µn,Q, for n > 2. The connected component of the identity
is geometrically irreducible (as the theorem says) but all other components split
into more components after extending to Q̄.

4.2 Component scheme

Let k be a field. Let X/k be a scheme, locally of finite type.
The inclusion functor

{ét k-schemes} −→ {loc. fin. type Sch/k}

admits a left adjoint

$0 : {loc. fin. type Sch/k} −→ {ét k-schemes}

In other words, every morphism X → Y of k-schemes, with Y/k étale, factors
uniquely via X → $0(X).

To understand what $0(X) is, we use our description of étale k-schemes.
Fix a separable closure k̄/k. Observe that Gal(k̄/k) acts on Spec(k̄), hence

on, Xk̄ = X ×k Spec(k̄), hence on the topological space underlying Xk, hence
on π0(Xk̄).

The claim is then, that this action is continuous. Indeed, every connected
component C ∈ π0(Xk̄) is defined over some finite extension k′ ⊂ k̄ of k, and
therefore the stabiliser of C contains the open subgroup Gal(k̄/k′). (See the
manuscript §3.27 for details.) The étale k-scheme associated with this action is
$0(X).

This shows that $0 is a functor, as claimed. It is the identity on étale
k-schemes. Consequently, every map X → Y to an étale scheme induces a map
$0(X)→ Y .

There is an obvious map Xk̄ → $0(Xk̄). This map is Gal(k̄/k)-equivariant,
and therefore we get a map X → $0(X). The fibers of this map are precisely
the connected components of X (as open subschemes of X).

4.2.1 Component group

Let G/k be a group scheme, locally of finite type. Since G0 ⊂ G is a normal
subgroup scheme, there is a natural group scheme structure on $0(G). In
particulare we get the following short exact sequence of group schemes.

1 7→ G0 → G→ $0(G)→ 1
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4.3 Reduced group scheme

Let k be a field. Let G/k be a group scheme. Let Gred be the underlying reduced
scheme of G.

It is natural to ask if Gred is carries a natural group scheme structure over k.
In general the answer is no.

However, if we assume k is perfect, the answer is yes. Since Gred is reduced, it
is smooth (the theorem on connected components), and therefore geometrically
reduced (again the theorem). By EGA IV 4.6.1, this implies that Gred ×k Gred

is reduced, and therefore is mapped to Gred under the multiplication map
G×k G→ G.

In general Gred ⊂ G is not normal! See exercise 3.2 from the manuscript.
For more information about (possibly) surprising behaviour, one can take a look
at http://mathoverflow.net/questions/38891/is-there-a-connected-k-

group-scheme-g-such-that-g-red-is-not-a-subgroup and the following ex-
ample by Laurent Moret-Bailly:

Over a field of characteristic p > 0, take for G the semidirect product αpoGm
where Gm acts on αp by scaling. Then G is connected but Gred = {0} ×Gm is
not normal in G.

Example copied from: http://mathoverflow.net/questions/161604/is-
g-operatornamered-normal-in-g?rq=1

5 Characteristic 0 group schemes are smooth

Let k be a field of characteristic 0. Let G/k be a group scheme that is locally of
finite type.

Theorem 3 G is reduced, hence G/k is smooth.

Proof See Theorem 3.20 of the manuscript for a proof.

This result has some nice consequences.

• If G/k is finite, then it is étale.

• If G/k if finite, and k is algebraically closed, G/k is a constant group
scheme.

• If G/k is finite, then it is a form of a constant group scheme.

6 Cartier duality for finite commutative group
schemes

We only present Cartier duality over fields. For a more general picture, see the
manuscript §3.21 and further.

Let k be a field. Let G/k be a finite commutative group scheme. To G we
can attach the functor

GD : Schop
/S −→ Grp

T 7−→ HomGrp/S
(GT ,GmT )
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If G is commutative, finite, then GD is representable.
To see this, first remark that since G is finite over k, G is affine. We can

thus study G, by studying its Hopf algebra.

6.1 Hopf algebras

I am not going to discuss Hopf algebras in the generality that mathematical
physicists would do.

The category of affine k-schemes is dual to the category of k-algebras. Hence
a group object in the former corresponds to a cogroup object in the latter.

In particular, for an algebra A we get the following data

unit (algebra structure map) e : k → A
multiplication m : A⊗k A→ A

and if A is a Hopf algebra, we moreover have

co-unit (augmentation map) ẽ : A→ k
co-multiplication m̃ : A→ A⊗k A
co-inverse ĩ : A→ A

I am not going to spell out what it means for A to be a co-commutative Hopf
algebra, but you will just have to dualize all diagrams for group objects.

On k-algebras, use ( )
D

as notation for the dualisation functor Hom( , k).

Lemma 2 Let A be a co-commutative Hopf algebra over k. The dual data
(AD, ẽD, m̃D, eD,mD, ĩD) specifies a co-commutative k-Hopf algebra.

Proof Draw all the diagrams for a co-commutative Hopf algebra. Reverse all
the arrows. Remark that nothing happened, up to a permutation.

We return to the group scheme G/k. Recall that it is commutative and finite.
Hence the global sections OG(G) form a co-commutative Hopf algebra.

Theorem 4 The Cartier dual GD is represented by Spec(AD).

Proof Let R be any k-algebra. We have to show that GD(R) is naturally
isomorphic to Homk(Spec(R),Spec(AD)).

Observe that

GD(R) = HomGrpSch/R
(GR,GmR) ⊂ HomR(R[x, x−1], A⊗k R).

On the other hand,

Homk(Spec(R),Spec(AD)) ∼= Homk(AD, R)

∼= HomR(AD ⊗k R,R)

∼= HomR(A⊗k RD, R).

To make life easier, we now just write A for the R-Hopf algebra A ⊗k R. So
we want to prove that HomR(AD, R) is canonically isomorphic to the subset of
Hopf algebra homomorphisms of HomR(R[x, x−1], A).

This latter subset is described as follows: A ring homomorphism f is deter-
mined by the image of x. It is a Hopf algebra homomorphism, precisely when
m̃(f(x)) = f(x)⊗ f(x).
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So we get the set {a ∈ A∗ | m̃(a) = a ⊗ a}. From the diagrams for Hopf
algebras, we see that if a ∈ A satisfies m̃(a) = a ⊗ a, then ẽ(a) · a = a, and
ĩ(a) · a = ẽ(a). If a ∈ A∗, then ẽ(a) = 1 by the first equation. If on the other
hand ẽ(a) = 1, then the second equation implies a ∈ A∗. Therefore

{a ∈ A∗ | m̃(a) = a⊗ a} = {a ∈ A | m̃(a) = a⊗ a and ẽ(a) = 1}.

Reasoning from the other side, every R-module homomorphism AD → R is
an evaluation homomorphism

eva : AD −→ R
λ 7−→ λ(a)

If we want eva to be a ring homomorphism, it should satisfy

eva(1) = 1, i.e. eva ◦ ẽD = id

eva(λµ) = eva(λ)eva(µ), i.e. eva ◦ m̃D = eva · eva.

The first equation is equivalent with ẽ(a) = 1. Indeed

eva(ẽD(idR)) = ẽ(a).

The second equation demands

(λ⊗ µ)(m̃(a)) = λ(a)µ(a)

This is equivalent with m̃(a) = a⊗ a, which can be seen by letting λ and µ run
through a dual basis of A.

Hence we are back at the set

{a ∈ A | m̃(a) = a⊗ a and ẽ(a) = 1}

which completes the proof.

7 Exercises

(1) Show that µn/k is unramified if n ∈ k∗.

(2) Show that µn/k is formally étale if n ∈ k∗.

(3) Let k be a field of characteristic p. Give a k-algebra A, such that αp(A) is
not trivial.

(4) Compute G0 for G = µn/k (think about the characteristic of k).

(5) Compute the Cartier dual of (Z/nZ)k for n ∈ k∗.
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