
The decomposition theorem

Notes by Johan Commelin Monday, the 10th of April, 2017

1. Introduction

The aim of this talk is to explain the main ideas in the proofs of two theorems: (i) the decomposition theorem

over finite fields, see theorem 5.4.5 of [BBD]; and (ii) the hard Lefschetz theorem, see theorem 5.4.10 of [BBD].

We will now fix some notation, and then state these theorems.

1.1 Notation. We fix a finite field Fq of characteristic p, with q elements; and an algebraic closure F/Fq.

Let φq denote the arithmetic Frobenius: x 7→ xq, and let Frq denote the geometric Frobenius: φ−1q . We

adhere to the convention that objects over Fq will be decorated with a subscript ‘0’, like so: ♦0; and the

corresponding object after extending scalars to F will be denoted by dropping the subscript, like so: ♦. In

these notes we write D(X0) for Db
c (X0, Q̄`), and likewise D(X) for Db

c (X, Q̄`).

1.2 Theorem. (Decomposition theorem; 5.4.5 of [BBD]) Let K0 ∈ Dm(X0) be pure. Then

K =
⊕
i

pHi(K)[−i].

To state the relative hard Lefschetz theorem, we need a short setup: Let f :X0 → Y0 be a projective

morphism. Let ` ∈ H2(X0,Q`(1)) be the first Chern class of a relatively ample invertible sheaf. For every

object K0 ∈ D(X0), the class ` defines a morphism from K0 to K0[2](1). Iteratively we obtain morphisms

`n:K0 → K0[2n](n). After applying f∗ we get `n: f∗K0 → f∗K0[2n](n), and `n: pHif∗K0 → pHi+2nf∗K0(n).

1.3 Theorem. (Relative hard Lefschetz theorem; 5.4.10 of [BBD]) Let f :X0 → Y0 be a projective morphism.

Let ` ∈ H2(X0,Q`(1)) be the first Chern class of a relatively ample invertible sheaf. Let F0 be a pure perverse

sheaf on X0. For every i ≥ 0, the morphism

`i: pH−if∗F0 → pHif∗F0 (i)

is an isomorphism.

2. Recap from previous weeks

Recall the following results from Pol’s talk.

2.1 Theorem. (5.1.2 of [BBD]) The functor F0 7→ (F,F∗q) from perverse sheaves on X0 to perverse sheaves

on X endowed with an isomorphism Fr∗qF → F is fully faithful and the essential image is stable under

extensions and subquotients.

2.2 Theorem. (part of 5.1.14 of [BBD]) (i) f!, f
∗ respect D≤w; (ii) f !, f∗ respect D≥w.

Recall the main result of Arne’s talk: the weight filtration.
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2.3 Theorem. (5.3.5 of [BBD]) A mixed perverse sheaf F0 on X0 admits a unique increasing filtration W,

the weight filtration, such that the graded pieces GrWi F0 are pure of weight i. Every morphism F0 → G0 is

strictly compatible with these weight filtrations.

2.4 Corollary. (5.3.7 of [BBD]) For a mixed perverse sheaf F0 on X0 to be of weight ≤ w, it is necessary

and sufficient that that for every irreducible subvariety Y0 ⊂ X0 (of dimension d = dim(Y0)) there is a dense

open U0 ⊂ Y0 such that H−d(F0) is pointwise of weight ≤ w − d.

3. First result

3.1 Fact. (5.1.15.(ii) and (iii) of [BBD]) Let K0 and L0 be in Dm(X0). Let w be an integer. Assume that

K0 ∈ D≤w(X0), and L0 ∈ D≥w(X0). Then we have Homi(K,L)F = 0 for i > 0. In particular, for i > 0, the

morphism Homi(K0, L0)→ Homi(K,L) is the zero map. If L0 ∈ D>w(X0), then Homi(K0, L0) = 0.

3.2 Theorem. (5.3.8 of [BBD]) Let F0/X0 be a pure perverse sheaf. Then the perverse sheaf F/X is

the direct sum of simple perverse sheaves (which must then be of the form j!∗L[d], where j:U → X is the

inclusion of a smooth connected open that is pure of dimension d and L is an irreducible lisse Q̄`-sheaf on U).

Proof. Let F ′ be the direct sum of the simple perverse subsheaves of F ; it is the largest semisimple subobject

of F , and it suffices to show that F ′ = F . By this maximality property, we know that F ′ is stable under

Frobenius and thus comes from a subsheaf F ′0 ⊂ F . Now consider the extension 0→ F ′0 → F0 → F ′′0 → 0

and use fact 3.1 to conclude that F ∼= F ′ ⊕ F ′′. By the maximality of F ′ we conclude that F ′′ = 0. Thus

F ′ = F . qed

3.3 Caveat. (Remark 5.3.10 of [BBD]) So far, everything we have done was with Q̄`-coefficients, but

it could also have been done with Q`-coefficients (or coefficients in some other `-adic field); although the

linear algebra involved is a lot harder. However, the following result is not true with Q`-coefficients; we really

need Q̄`.

3.4 Theorem. (5.3.11 of [BBD]) Let F0 be a pure perverse sheaf on X0, let j:U0 → X0 be an open, and

let i:Z0 → X0 be the complementary closed. Then the perverse sheaf F0 admits a unique decomposition

F0 = j!∗F
′
0 ⊕ i∗F ′′0

as follows: (i) the adjunction morphism pj!j
∗F0 → F0 factors via the quotient j!∗j

∗F0 of pj!j
∗F0, while

pj∗j
∗F0 → F0 factors via the subobject j!∗j

∗F0 of pj∗j
∗F0 (so we should take F ′0 = j∗F0); and (ii) the

composition of the adjunction morphisms

i∗
pi!F0 → F0 → i∗

pi∗F0

is an isomorphism (so we should take F ′′0 = i∗F0).

Proof. The uniqueness follows from the fact that Hom(j!∗F
′
0, i∗F

′′
0 ) = 0 = Hom(i∗F

′′
0 , j!∗F

′
0). It suffices to

prove the existence over X (by theorem 2.1). By theorem 3.2 we may assume that F is simple. Now the

result is evident. qed
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4. The decomposition theorem

The folloing result is the perverse analogue of corollary 2.4.

4.1 Theorem. (5.4.1 of [BBD]) For K0 ∈ Dm(X0) to be of weight ≤ w (resp. ≥ w), it is necessary and

sufficient that all the perverse sheaves pHiK0 are of weight ≤ w + i (resp. ≥ w + i).

Proof. The respective assertion is dual to the non-respective assertion, to which we limit our attention.

If the triangle A0 −→ B0 −→ C0
+1−→ · · · is distinguished, and if A0 and C0 are of weight ≤ w, then so

is B0. Thus the sufficient condition follows: use the triangle pτ<iK0 −→ pτ≤iK0 −→ (pHiK0)[−i] +1−→ · · · and

apply induction to i.

Suppose that K0 is of weight ≤ w. We prove by induction to i that the sheaf pHiK0 is of weight ≤ w+ i.

For i sufficiently large, the pHiK0 are zero, and the assertion is trivial. Suppose then that the pHiK0 are of

weight ≤ w + i for i > n, so that the truncation pτ>nK0 is of weight ≤ w (by the sufficient condition proven

above). We prove that pHnK0 is of weight ≤ w + n, and our main weapon is corollary 2.4.

For simplicity we assume that w = n = 0; one may reduce to this case by twisting and shifting.

The distinguished triangle pτ>0K0[−1] −→ pτ≤0K0 −→ K0
+1−→ · · · shows that pτ≤0K0 is of weight ≤ 0

(once again, by the sufficient condition proven above). The triangle pτ<0K0 −→ pτ≤0K0 −→ pH0K0
+1−→ · · ·

gives the exact sequence

H−d(pτ≤0K0) −→ H−d(pH0K0) −→ H−d+1(pτ<0K0).

If Y0 is an irreducible subvariety of dimension d, then there exists a smooth dense open U0 ⊂ Y0 such that

the restriction of H−d+1(pτ<0K0) to U0 is zero. Hence the pointwise weights of H−d(pH0K0) are ≤ −d on U0.

By corollary 2.4, pH0K0 is of weight ≤ 0, which proves the result. qed

4.2 Corollary. For K0 ∈ Dm(X0) to be pure of weight w, it is necessary and sufficient that all the

perverse sheaves pHiK0 are pure of weight w + i.

Proof of the decomposition theorem (1.2). By corollary 4.2 and fact 3.1 the morphism of degree 1 in the distin-

guished triangle pτ<iK0 −→ pτ≤iK0 −→ (pHiK0)[−i] +1−→ · · · has trivial image in Hom1(pHiK[−i], pτ<iK)

(because both (pHiK0)[−i] and pτ<iK0 have weight w). Hence we get short exact sequences

0 −→ pτ<iK −→ pτ≤iK −→ (pHiK)[−i] −→ 0

that must be trivial extensions. In other words, we get a decompositions pτ≤iK ∼= pτ<iK ⊕ (pHiK)[−i], which

completes the proof (by induction). qed

5. The hard Lefschetz theorem

Let us recall the statement: Let f :X0 → Y0 be a projective morphism. Let ` ∈ H2(X0,Q`(1)) be the

first Chern class of a relatively ample invertible sheaf. For every object K0 ∈ D(X0), the class ` defines a

morphism from K0 to K0[2](1). Iteratively we obtain morphisms `n:K0 → K0[2n](n). After applying f∗ we

get `n: f∗K0 → f∗K0[2n](n), and `n: pHif∗K0 → pHi+2nf∗K0(n).
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5.1 Theorem. (Relative hard Lefschetz theorem; 5.4.10 of [BBD]) Let f :X0 → Y0 be a projective morphism.

Let ` ∈ H2(X0,Q`(1)) be the first Chern class of a relatively ample invertible sheaf. Let F0 be a pure perverse

sheaf on X0. For every i ≥ 0, the morphism

`i: pH−if∗F0 → pHif∗F0 (i)

is an isomorphism.

Eventually, the proof will go by induction on i; the case i = 0 is trivial. But first we need a lot of preparations.

Note that the statement is local on Y0. Thus we may shrink Y0, and upon replacing ` be some multiple

we may and do assume (i) that f factors as X0 ↪→ Pd
0 × Y0 → Y0, for some suitable d ≥ 0; and (ii) that ` is

the first Chern class of O(1).

Let P̌d
0 be the dual projective space of Pd

0, and put Y ′0 = P̌d
0 × Y0, and X ′0 = P̌d

0 ×X0. Let H0 ⊂ X ′0 be

the universal family of hyperplane sections parameterised by Y ′0 : the fibre of H/Y ′ above (a, y) ∈ Y ′ is the

hyperplane section Xy ∩ a of the fibre Xy.

We denote the projections X ′0 → X0 and Y ′0 → Y0 by u and the map X ′0 → Y ′0 that is induced by f is

again denoted by f . This might cause some confusion, but in what follows it will be clear from the context

which map is meant. In particular, note that fu = uf . We write h for the projection H0 → Y ′0 , and v for the

inclusion H0 → X ′0.

X0 X ′0 H0

Y0 Y ′0

f f

u v

h
u

Key facts for proving hard Lefschetz: (i) the functors u∗[d] are fully faithful, so we can work on X ′

and Y ′; and (ii) the largest perverse subsheaf of F ∈ D(Y ′) that comes from Y is u∗(pH−du∗F )[d].

5.2 Lemma. (5.4.11 of [BBD]) Let K be in pD≥0(X).

(i) Then we have u∗f∗K
∼−→ f∗u

∗K, and therefore (u∗pHif∗K)[d]
∼−→ pHi+df∗u

∗K.

(ii) For i < d− 1, we have pHif∗u
∗K

∼−→ pHih∗(uv)∗K.

(iii) We have pHd−1f∗u
∗K ↪→ pHd−1h∗(uv)∗K, and pHd−1f∗u

∗K is identified with the largest perverse

subsheaf of pHd−1h∗(uv)∗K that comes from Y .

Proof. The morphisms u are smooth of relative dimension d. Hence the functors u∗[d] are t-exact (by 4.2.4

of [BBD]), which proves (i). Write U for the complement of H in X ′, and denote the projection U → Y ′

by g. It is an affine morphism, and u∗K is in pD≥d(X ′), hence g!(u
∗K|U ) is in pD≥d(Y ′) (by 4.1.2 of [BBD]).

Now consider the triangle

g!(u
∗K|U ) −→ f∗u

∗K −→ h∗(uv)∗K
+1−→ · · ·

and remark that pHi(g!(u
∗K|U )) = 0 for i < d. This proves (ii) and the first assertion (injectivity) of (iii).

The second assertion of (iii) is crucial for what follows; but its proof is rather technical. We skip this

part of the proof. qed

Proof of theorem 5.1. We have made all necessary preparations; now is the time to start the actual proof.

Step 1. Consider the restriction morphism

(u∗pH−if∗F )[d] = pH−if∗(u
∗F [d])→ pH−i+1h∗((uv)∗F [d− 1]).

4



Now we need non-trivial input from étale cohomology, the so-called Gysin morphism: as a little miracle,

there is a morphism
pHjh∗((uv)∗F [d− 1])→ u∗(pHj+1f∗F )[d](1).

Here we use that v:H ↪→ X ′ has codimension 1. Now we compose these to morphisms (with j = −i+ 1) and

obtain a morphism

(u∗pH−if∗F )[d]→ u∗(pH−i+2f∗F )[d](1).

It turns out that this morphism is precisely the u∗[d] of the morphism ` that occurs in the statement

of theorem 5.1.

Let us focus on the case i = 1. By lemma 5.2 we know that (u∗pH−1f∗F )[d] is the largest subobject of
pH0h∗((uv)∗F [d− 1]) that comes from Y . Dually we know that u∗(pH1f∗F )[d](1) is the largest quotient of
pH0h∗((uv)∗F [d− 1]) that comes from Y .

Since F0 is pure, so is (uv)∗F0 (since u! = u∗[2d](d), and v! = v∗; now use theorem 2.2), and

hence h∗((uv)∗F0) (h is proper). By corollary 4.2 we conclude that pH0h∗((uv)∗F0) is pure, and there-

fore pH0h∗((uv)∗F [d−1]) is semi-simple (theorem 3.2), which renders its largest subobject that comes from Y

isomorphic to its largest quotient that comes from Y . Therefore u∗[d] applied to ` is an isomorphism; but

then ` is an isomorphism itself.

Step 2. We proceed by induction on i. For i ≥ 1, consider the u∗[d] of `i+1 as the composition

(u∗pH−i−1f∗F )[d] −→ (u∗pH−if∗F )[d− 1]
`i−→ (u∗pHif∗F )[d− 1](i) −→ (u∗pHi+1f∗F )[d](i+ 1),

where the last morphism is again the Gysin morphism.

By lemma 5.2 the first morphism is an isomorphism, and the final morphism (the Gysin map) is an

isomorphism for dual reasons. Now apply the induction hypothesis to the sheaf (uv)∗F0[d − 1] and the

morphism h:H0 → Y ′0 to deduce that the morphism in the middle is also an isomorphism. This proves the

result. qed
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