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-1. Introduction

Let X be a smooth projective variety of dimension d over K. In the previous talk we have seen how to attach

a triangulated category Db(X) to X: namely, the bounded derived category of coherent sheaves on X.

In this talk we will focus on a theorem of Bondal and Orlov, that shows that Db(X) is a complete

invariant of X as soon as the canonical bundle ωX =
∧d

Ω1
X (or its dual ω∨X) is ample. On, the other hand,

if neither ωX nor ω∨X is ample, then there may be another smooth projective variety Y over K such that

Db(X) ∼= Db(Y ). We may then use such an equivalence as a sort of ‘bridge’.

For purposes of exposition, we assume that the ground field K is algebraically closed. This simplifies

some of the proofs, although all statements are valid over arbitrary fields.

0. Our todo list for today

1. canonical models

2. Serre functors

3. dimension lemma

4. simple objects and point-like objects

5. invertible objects

6. the theorem of Bondal and Orlov

7. (ample sequences)?

8. (a description of Aut(Db(X)) when ωX or ω∨X is ample)?

1. The canonical model

Let X be a smooth projective variety over K. Let ωX be the canonical bundle
∧d

Ω1
X , where d = dim(X).

Form the graded algebra BX =
⊕

k∈ZH
0(X,ωk

X), where multiplication is induced from the algebra structure

on the exterior algebra
⊕

k∈Z ω
k
X . Denote with B+

X the subalgebra
⊕

k∈Z≥0
H0(X,ωk

X). The algebra B+
X is

called the canonical ring , and Proj(B+
X) is called the canonical model of X: there is a natural morphism

X → Proj(B+
X).

1.1 Remark. (i) The variety Proj(B+
X) only depends on the birational equivalence class of X. For example,

a blowup of X will have the same canonical model as X. (ii) The dimension kod(X) of Proj(B+
X) is called

the Kodaira dimension of X; we have kod(X) ≤ dim(X), and kod(X) := −∞ if Proj(B+
X) is empty. (iii)

Usually the variety Proj(B+
X) has singularities. (iv) The map X → Proj(B+

X) is an isomorphism if and only

if ωX is ample. (v) Together, the previous remarks show that it is a strong condition to require that ωX is

ample.

1



In this talk we require usually require that ωX or ω∨X is ample. This is still a strong condition. We

therefore do not look at the map X → Proj(B+
X) but at the natural map X → Proj(BX). This map is an

isomorphism if and only if ωX or ω∨X is ample.

1.2 Lemma. Let X be a smooth projective variety over K. Then BX may be recovered from the data

(Db(X),OX , ωX), where we consider Db(X) as K-linear category. In particular, if ωX or ω∨X is ample, we

recover X.

Proof. Observe that H0(X,ωk
X) = Hom(OX , ω

k
X). Thus BX =

⊕
k∈Z Hom(OX , ω

k
X) may be recovered from

(Db(X),OX , ωX). qed

2. Serre functors

2.1 Definition (def 1.28 of [H]). Let A be a K-linear category. A Serre functor is a K-linear equivalence

S:A → A such that for any two objects A,B ∈ A there exists an isomorphism

ηA,B : Hom(A,B) −→ Hom(B,S(A))∨

(of K-vector spaces) that is functorial in A and B.

2.2 Example. Let us return to the smooth projective variety X of dimension d over K. Serre duality

provides us with an example of a Serre functor on Db(X): SX(F•) = F• ⊗ ωX [d]. For this reason, the

canonical bundle ωX is also called the dualizing sheaf.

2.3 Lemma. Let A be a K-linear category. Let S1 and S2 be Serre functors on A. Then S1
∼= S2.

Proof. This follows immediately from the definition and the Yoneda lemma. qed

2.4 Lemma (lem 1.30 of [H]). Let A and B be two K-linear categories. Let SA (resp. SB) be a Serre

functor on A (resp. B). If F :A → B is a K-linear equivalence, then F commutes with the Serre functors SA

and SB. In other words: F ◦ SA ∼= SB ◦ F .

Proof. This follows from lemma 2.3 and transport of structure. qed

2.5 Lemma. Let X be a smooth projective variety over K. Then BX may be recovered from the data

(Db(X),OX), where we consider Db(X) as graded K-linear category. In particular, if ωX or ω∨X is ample,

we recover X.

Proof. It follows from lemma 2.3 that up to isomorphism there is a unique Serre functor S on Db(X).

Now observe that ωX
∼= S(O)[−dimX]. (Here we use the graded structure on Db(X).) We conclude by

lemma 1.2. qed

3. The dimension lemma

With this bit of knowledge on Serre functors under our belt, we can also prove that one can recover the

dimension of X from just Db(X).
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3.1 Lemma (prp 4.1 of [H]). Let X and Y be smooth projective varieties over K. If there exists a derived

equivalence

Db(X) −→ Db(Y )

then dim(X) = dim(Y ) and the canonical bundles ωX and ωY are of the same order.

Proof. Let x ∈ X be a closed point. With K(x) we denote the skyscraper sheaf at x. (It is the sheaf F such

that F (U) = k if x ∈ U , and F (U) = 0 otherwise. In other words i∗k, where i: {x} ↪→ X is the inclusion.)

Then

K(x) ∼= K(x)⊗ ωX
∼= SX(K(x))[−dim(X)].

Hence we get

F (K(x)) ∼= F (SX(K(x))[−dim(X)]) ∼= F (SX(K(x)))[−dim(X)]

since F is exact, and by lemma 2.4 we may continue with

F (SX(K(x)))[−dim(X)] ∼= SY (F (K(x)))[−dim(X)] = F (K(x))⊗ ωY [dim(Y )− dim(X)].

Now observe that F (K(x)) is a non-trivial(!) bounded complex, since F is an equivalence. Therefore

Hi(F (K(x))) ∼= Hi(F (K(x))⊗ ωY [dim(Y )− dim(X)]) ∼= Hi+dim(Y )−dim(X)(F (K(x)))⊗ ωY

shows that dim(Y ) − dim(X) = 0, for otherwise the complex would not be bounded. In other words, X

and Y have the same dimension, say d.

Suppose that ωk
X
∼= OX . The Sk

X [−kd] = id. Hence Sk
Y [−kd] ∼= F ◦ Sk

X [−kd] ◦ F−1 = id. This means

that ωk
Y
∼= OY . We conclude that ωX and ωY are of the same order. qed

4. Simple objects and point-like objects

4.1 Definition (def 4.3 of [H]). Let D be a K-linear triangulated category with a Serre functor S And

object P ∈ D is called point-like of codimension d if

1. S(P ) ∼= P [d];

2. Hom(P, P [i]) = 0, for i < 0; and

3. P is simple, that is: Hom(A,A) is a field.

4.2 Example. Let X be a smooth projective variety of dimension d over K. Let x ∈ X be a closed point.

Then the skyscraper sheaf K(x) ∈ Db(X) is point-like of codimension d.

Assume that ωX
∼= OX . (This condition is satisfied, for example, if X is an abelian variety or a

K3 surface.) Let F be a simple sheaf on X. Then F defines a point-like object in Db(X).

4.3 Lemma (lem 4.5 of [H]). Let X be a smooth projective variety over K. Suppose that F• is a simple

object of Db(X) with zero-dimensional support. If Hom(F•,F•[i]) = 0, for all i < 0, then F• ∼= K(x)[m]

for some closed point x ∈ X and some integer m.
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Proof. If the support of F• is not irreducible, then F• is not simple. (This is clear for sheaves, and by an

induction argument using distinguished triangles, one may also deduce this for bounded complexes.) Hence

there is a closed point x ∈ X such that F• is supported on {x}.
Let i+ be the maximal integer i such that Hi(F•) 6= 0, and i− be the minimal integer i such that

Hi(F•) 6= 0. Note that Hi(F•) is a finite module over the Noetherian local ring Ox, and thus there is a

non-trivial homomorphism Hi+(F•)→ Hi−(F•). This gives a non-trivial composition

F•[i+]→ Hi+(F•)→ Hi−(F•)→ F•[i−].

By assumption, this implies i−− i+ ≥ 0, and hence i− = i+. Write i for i− = i+. We have now showed that

F•[i] is isomorphic to a coherent sheaf F with support on x. There is a natural quotient map F → K(x),

and this must be an isomorphism, since F is simple. qed

4.4 Proposition ([BO]; prp 4.6 of [H]). Let X be a smooth projective variety over K. Assume that

ωX or ω∨X is ample. Then every point-like object of Db(X) is isomorphic to K(x)[m] for some closed point

x ∈ X and some integer m.

Proof. Write d for the dimension of X. Let P be a point-like object of Db(X) of codimension c. Abbreviate

Hi(P ) by Hi. By the first condition on P we find Hi⊗ωX [d] ∼= Hi[c], which implies c = d and Hi⊗ω ∼= Hi.

For any coherent sheaf F , the Hilbert polynomial PF (k) = χ(F ⊗ ωk
X) has degree dim supp(F ). We

have just computed that PHi(k) is constant, and therefore Hi has zero-dimensional support. Now apply

lemma 4.3. qed

4.5 Lemma (prp 3.17 of [H]). Let X be a smooth projective variety over K. Then the objects K(X), with

x ∈ X a closed point, form a spanning class for Db(X).

Proof. This means that for every object F• in Db(X) there exist closed points x1, x2 ∈ X, and integers

i1, i2 ∈ Z such that

Hom(F•,K(x1)[i1]) 6= 0 6= Hom(K(x2)[i2]F•).

By Serre duality we only have to find x1 and i1. Let m be the maximal integer i such that Hi = Hi(F•) 6= 0.

Let x1 be a closed point in supp(Hm). Then there is a non-trivial map Hm → K(x1), and we have

Hom(F•,K(x1)[−m]) = Hom(Hm,K(x1)) 6= 0. Thus we win, by taking i1 = −m. qed

5. Invertible objects

5.1 Definition (def 4.8 of [H]). Let D be a K-linear triangulated category, with a Serre functor S. An

object L ∈ D is called invertible if for every point-like object P ∈ D there exists an integer n such that

Hom(L,P [i]) =
{
K if i = n
0 otherwise.

5.2 Proposition ([BO]; prp 4.9 of [H]). Let X be a smooth projective variety over K. Every invertible

object in Db(X) is of the form L[m], with L a line bundle on X, and m ∈ Z. Conversely, if ωX or ω∨X is

ample, then for every line bundle L on X, and every m ∈ Z, the object L[m] ∈ Db(X) is invertible.
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Proof. Let L be an invertible object in Db(X). Let m be the maximal integer i such that Hi = Hi(L) 6= 0.

There is a natural map L→ Hm[−m]. Let x be a closed point in supp(Hm). There exists a non-trivial map

Hm → K(x). Since K(x)[−m] is point-like, and we know that

Hom(L,K(x)[−m]) = Hom(Hm,K(x)) 6= 0

we conclude that Hom(L,K(x)[i]) = 0 for all i 6= −m.

The strategy of the rest of the proof is as follows:

1. Use spectral sequences and commutative algebra to show that Hm is locally free at x.

2. Deduce that supp(Hm) is an irreducible subset of X, hence all of X.

3. This means that Hm is a line bundle.

4. The rank of Hm must be 1, by the defining property of invertible objects, hence Hm is a line bundle.

5. Use more spectral sequence arguments to deduce that Hi vanishes for i < m.

For the second part of the proposition, let L be a line bundle on X, and m ∈ Z. Let P ∈ Db(X) be

a point-like object. By proposition 4.4 we know that P = K(x)[n], for some closed point x ∈ X and some

n ∈ Z. We compute

Hom(L[m], P [i]) = Hom(OX , L
∨(x)[i+ n−m]) = Hi+n−m(X,L∨(x)).

Now, the latter cohomology group is trivial, unless i = m− n, and then it is H0(X,L∨(x)) = K. qed

6. A theorem of Bondal and Orlov

6.1 Theorem ([BO]; thm 4.11 of [H]). Let X and Y be smooth projective varieties over K. Assume that

ωX or ω∨X is ample. If there exists a graded equivalence Db(X) ∼= Db(Y ), then X ∼= Y . In particular, ωY

or ω∨Y is also ample.

Proof. Denote the equivalence Db(X)→ Db(Y ) with F . The graded equivalence preserves point-like objects

and invertible objects. By we know that OX is invertible, and therefore F (OX) is of the form L[m] for

some line bundle L on Y , and m ∈ Z. Replace F with ( ⊗ L∨[−m]) ◦ F . By construction we now have

F (OX) ∼= OY . If we prove that ωY or ω∨Y is ample, then we are done by lemma 2.5.

Let P ∈ Db(Y ) be a point-like object. By lemma 4.5 there exists a closed point y ∈ Y and an integer m

such that Hom(P,K(y)[m]) 6= 0. On the other hand, there are also closed points xP , xy ∈ X and integers

mP ,my ∈ Z such that F (K(xP )[mP ]) ∼= P and F (K(xy)[my]) ∼= K(y), since F is an equivalence. Now we

compute

0 6= Hom(P,K(y)[m]) = Hom(F (K(xP )[mP ]), F (K(xy)[my +m])) = Hom(K(xP )[mP ],K(xy)[my +m])

which implies xP = xy, and hence

P ∼= F (K(xP )[mP ]) ∼= F (K(xy)[mP ]) ∼= K(y)[mP −my].

In fact, since we have arranged that F (OX) = OY we get an induced bijection between the closed points

of X and those of Y : F (K(x)) = K(y)[m], for some y ∈ Y and m ∈ Z, and

0 6= Hom(OX ,K(x)) = Hom(F (OX), F (K(x)) = Hom(OY ,K(y)[m])
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implies that m = 0.

Finally, we will prove that if ωk
X is very ample, then ωk

Y is very ample. We follow [H] and show this by

proving that ωk
Y separates points and tangents. The line bundle ωk

Y separates points, if for any two closed

points y1, y2 ∈ Y the restriction map

ωk
Y → ωk

Y (y1)⊕ ωk
Y (y2) ∼= K(y1)⊕K(y2)

induces a surjection H0(Y, ωk
Y )→ H0(Y,K(y1)⊕K(y2)). Note that there is only one map ωk

Y → K(yi) (up

to scaling). Hence we get the desired result by transport of structure, since F (ωX) = ωY .

Now, on to separating tangents. The line bundel ωk
Y separates tangents if for every subscheme Zy ⊂ Y

of length 2 the restriction map ωk
Y → OZy induces a surjection H0(Y, ωk

Y ) → H0(Y,OZy ). Let us unwrap

this a bit: the subscheme Zy is given by a point y, and a tangent vector at y; and OZy fits into a short exact

sequence

0→ K(y)→ OZy
→ K(y)→ 0.

Thus, OZy
corresponds to a class in Hom(K(y),K(y)[1]), which we may transport to Db(X) to obtain a

sheaf OZx
belonging to some length 2 subscheme Zx ⊂ X. The equivalence F maps the restriction map

ωk
X → OZx

to the restriction map ωk
Y → OZy

. This proves the result. qed

7. Ample sequences

7.1 Definition. Let A be a k-linear abelian category with finite-dimensional homsets. A sequence of

objects Li ∈ A, i ∈ Z, is called ample if for any object A ∈ A there exists an integer i0(A) such that for all

i < i0(A) one has:

1. The natural morphism Hom(Li,K)⊗k Li → A is surjective.

2. If j 6= 0, then Hom(Li, A[j]) = 0.

3. Hom(A,Li) = 0.

7.2 Example. Let X be a smooth projective scheme over K. Let L be an ample line bundle on X. Then

the sequence (Li)i∈Z forms an ample sequence in the category of coherent sheaves on X. To see this, apply

Serre’s vanishing theorem, to see that the first two conditions are satisfied. The third condition also follows

from Serre’s vanishing theorem after applying Serre duality.

7.3 Proposition ([BO]; prp 4.23 of [H]). Let F : Db(A)→ Db(A) be an autoequivalence, with A a k-linear

abelian category with finite-dimensional homsets. Suppose f : id{Li} → F |{Li} is an isomorphism of functors

on the full subcategory {Li} given by an ample sequence Li in A. Then there exists a unique extension to

an isomorphism of functors f̃ : id→ F .

8. Autoequivalences

Let X be a smooth projective variety over K. In this section we want to study the group of autoequivalences

of Db(X).
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8.1 Example. We give three examples of autoequivalences. As we will see, if ωX or ω∨X is ample, then

these examples essentially cover all autoequivalences.

1. Let f :X → X be an automorphism. The f∗: Db(X) → Db(X) is an equivalence; its inverse is given

by f∗.

2. The shift functor [1] is an equivalence.

3. Let L be a line bundle on X. Then ⊗ L is an equivalence.

8.2 Proposition ([BO]; prp 4.17 of [H]). Let X be a smooth projective variety over K. Assume that ωX

or ω∨X is ample. Then

Aut(Db(X)) = Z× (Aut(X) n Pic(X)).

Proof. Let F be an autoequivalence. After shifting and twisting by a line bundle we may assume that

F (OX) = OX . Since F commutes with the Serre functor SX , we find F (ωk
X) = ωk

X , for all k ∈ Z.

Thus F induces a graded automorphism of BX , and thus an automorphism φ of Proj(BX) = X. After

replacing F with F ◦ φ∗, we may assume that the induced automorphism on X is trivial. Now it follows

from proposition 7.3 that F is the identity. qed
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