# MACLANE'S $Q^{\prime}$-CONSTRUCTION AND BREEN-DELIGNE RESOLUTIONS (DRAFT) 

JOHAN COMMELIN

I thank Peter Scholze and Reid Barton for valuable discussions about this topic.

## 1. Introduction

1.1. The purpose of this note is to construct a functorial complex $Q^{\prime}(A)$ with the following two properties:
(i) Every object $Q^{\prime}(A)_{i}$ is of the form $\bigoplus_{j=1}^{n_{i}} \mathbb{Z}\left[A_{i, j}^{r}\right]$.
(ii) Modulo some details that will be made precise below, we have

$$
\operatorname{RHom}\left(Q^{\prime}(A), B\right)=0 \quad \Longrightarrow \quad \operatorname{RHom}(A, B)=0
$$

See Lemma 4.4 for the actual statement.

## 2. Breen-Deligne resolutions

2.1. Theorem (Breen, Deligne, [2, Appendix to §IV]). There exists a functorial resolution $\mathrm{BD}(A)$ of an abelian group $A$ of the form

$$
\cdots \rightarrow \bigoplus_{j=1}^{n_{i}} \mathbb{Z}\left[A^{r_{i, j}}\right] \rightarrow \cdots \rightarrow \mathbb{Z}\left[A^{3}\right] \oplus \mathbb{Z}\left[A^{2}\right] \rightarrow \mathbb{Z}\left[A^{2}\right] \rightarrow \mathbb{Z}[A] \rightarrow A \rightarrow 0
$$

where all $n_{i}$ and $r_{i, j}$ are natural numbers.
Proof. See the appendix to Lecture IV in [2]. The proof uses a nontrivial amount of homotopy theory.
2.2. Remark. The map $\mathbb{Z}[A] \rightarrow A$ is simply the evaluation morphism $\sum c_{a}[a] \mapsto \sum c_{a} a$. The kernel of this map is generated by elements of the form $[a]+[b]-[a+b]$. In particular, the map $\mathbb{Z}\left[A^{2}\right] \rightarrow \mathbb{Z}[A]$ is the map induced by $(a, b) \mapsto[a]+[b]-[a+b]$.

The kernel of that map is generated by elements of the form

$$
[a, b+c]+[b, c]-[a, b]-[a+b, c] \quad \text { and } \quad[a, b]-[b, a] .
$$

The fact that this process can be continued to form a functorial resolution is the non-trivial content of Theorem 2.1.
2.3. Breen-Deligne resolutions have some very favourable properties, which have been used in [2].
(i) First and foremost, they are functorial in the abelian group $A$.
(ii) They exist in the generality of abelian group objects in any sheaf topos.
(iii) There exists a functorial homotopy between the "outer" and "inner" addition maps $\mathrm{BD}\left(A^{2}\right) \rightarrow \mathrm{BD}(A)$. See 3.6 .
2.4. Philosophical remark: Due to the inexplicit nature of the proof of Theorem 2.1, these Breen-Deligne resolutions cannot be used to compute explicit values of derived functors apart from vanishing results. Indeed, it seems that this is how Breen-Deligne resolutions are typically applied.

## 3. The engine

3.1. We now give a setup in which we can give an elementary alternative to Breen-Deligne resolutions. This setup applies to (condensed) abelian groups. It could be generalised further, but I do no know of elementary proofs in the general setting.
3.2. Let $\mathscr{A}$ be an abelian category with enough projectives, and assume that there is an action $\mathrm{Ab} \otimes \mathscr{A} \rightarrow \mathscr{A}$ that preserves coproducts in the first factor and such that $\mathbb{Z} \otimes-$ is naturally isomorphic to the identity. NB: this forces $\mathscr{A}$ to have arbitrary coproducts.

Finally, assume that $\mathscr{A}$ is an AB4-category, so that $\operatorname{Ext}^{i}(-,-)$ will turn coproducts in the first entry into products.
3.3. Lemma. Let $A$ and $B$ be objects of $\mathscr{A}$, and let $C \in \mathrm{Ch}_{\geq 0}(\mathscr{A})$ be a chain complex. Assume that

- $H_{0}(C) \cong A$;
- for all $i>0$, there exists an abelian group $H$ such that $H_{i}(C) \cong H \otimes A$;
- the functor $-\otimes A$ is exact.

Let $j$ be a natural number. Then the following implication holds: If $\operatorname{Ext}^{i}(C, B)=0$ for all $i \leq j$ then also $\operatorname{Ext}^{i}(A, B)=0$ for all $i \leq j$.

Proof. We induct on $j$. For $j=0$, note that every homomorphism $C \rightarrow B$ factors uniquely over $H_{0}(C)$. Since we assumed $H_{0}(C) \cong A$, we are done.

Now assume the result is true for $j$. Let $\mathscr{S}$ be the class of all complexes $T \in \mathrm{Ch}_{\geq 0}(\mathscr{A})$ for which $\operatorname{Ext}^{i}(T, B)=0$ for all $i \leq j+1$. We assume that $C \in \mathscr{S}$, and we want to conclude $A \in \mathscr{S}$.

The class $\mathscr{S}$ has the following two properties:
(i) It is closed under arbitrary coproducts (since $\mathscr{A}$ is AB4).
(ii) If $T_{1} \rightarrow T_{2} \rightarrow T_{3} \xrightarrow{+1}$ is a triangle and $T_{1} \in \mathscr{S}$ then $T_{2} \in \mathscr{S} \Longleftrightarrow T_{3} \in \mathscr{S}$ (by the long exact sequence of Ext-groups).
Now consider the triangles

$$
\Delta_{k}: \tau_{\geq k+1} C \rightarrow \tau_{\geq k} C \rightarrow H_{k}(C)[k] \xrightarrow{+1}
$$

For $k>j$, we know that $\tau_{\geq k+1} C \in \mathscr{S}$.
We will be done if we show $H_{k}(C)[k] \in \mathscr{S}$ for $k>0$. Indeed, if that is the case, we have $\tau_{\geq k} C \in \mathscr{S}$ for all $k>0$, by descending induction on $k$ and the closure property of $\mathscr{S}$ for the triangles $\Delta_{k}$. Finally, since $\tau_{\geq 0} C=C$, we use $\Delta_{0}$ to conclude $H_{0}(C)[0] \cong A \in \mathscr{S}$.

Let $k>0$. We want to show $H_{k}(C)[k] \in \mathscr{S}$. By assumption, it suffices to show that $H \otimes A[k] \in \mathscr{S}$ for arbitrary abelian groups $H$. Furthermore, we point out that $A[k] \in \mathscr{S}$, by the induction hypothesis. Indeed, $\operatorname{Ext}^{i}(A[k], B)=\operatorname{Ext}^{i-k}(A, B)=0$ for all $i \leq j+1$ since $i-k \leq j$.

Let $H$ be any abelian group, and consider a two-step free resolution

$$
0 \rightarrow \bigoplus_{s \in S_{1}} \mathbb{Z} \rightarrow \bigoplus_{s \in S_{0}} \mathbb{Z} \rightarrow H \rightarrow 0
$$

Since $-\otimes A$ is exact and preserves coproducts, we obtain a short exact sequence

$$
0 \rightarrow \bigoplus_{s \in S_{1}} A \rightarrow \bigoplus_{s \in S_{0}} A \rightarrow H \otimes A \rightarrow 0
$$

We conclude that $H \otimes A[k] \in \mathscr{S}$, since $A[k] \in \mathscr{S}$. In particular, $H_{k}(C)[k]$ is contained in $\mathscr{S}$, which finishes the proof.
3.4. We now wish to find situations where Lemma 3.3 can be applied. First consider the case $\mathscr{A}=\mathrm{Ab}$. In that case, the condition that $-\otimes A$ is exact means that we should consider flat abelian groups, a.k.a. torsion-free abelian groups.

If $A$ is torsion-free, then it is naturally a filtered colimit of finitely-generated free groups. (Indeed, it is the union of its finitely generated subgroups, which are free.)
3.5. Let $C: \mathrm{Ab} \rightarrow \mathrm{Ch}_{\geq 0}(\mathrm{Ab})$ be a functor. Then there is a natural map

$$
\begin{aligned}
A & \rightarrow \operatorname{Hom}\left(H_{k}(C(\mathbb{Z})), H_{k}(C(A))\right) \\
a & \mapsto H_{k}(C(1 \mapsto a)),
\end{aligned}
$$

inducing a natural map $H_{k}(C(\mathbb{Z})) \otimes A \rightarrow H_{k}(C(A))$. Suppose that $H_{k}(C(-))$ is additive and preserves filtered colimits. Then this natural map is an isomorphism for torsion-free abelian groups $A$.

Note that $H_{k}$ is additive and preserves filtered colimits. Below, we will construct and example of a functor $C$ that preserves filtered colimits, and is additive up to homotopy. This is good enough, because the composition $H_{k}(C(-))$ will then be additive.
3.6. We say that $C$ is additive up to homotopy if the following condition is satisfied. For every abelian group $A$, there is a natural map $\sigma: C\left(A^{2}\right) \rightarrow C(A)$ induced by the addition map $+: A^{2} \rightarrow A$. On the other hand, there is also a natural "addition on the outside", obtained by adding the two maps $C\left(A^{2}\right) \rightarrow C(A)$ induced by the projection maps $\pi_{1}, \pi_{2}: A^{2} \rightarrow A$.

Indeed, the addition map $+: A^{2} \rightarrow A$ is the sum $\pi_{1}+\pi_{2}$, and hence $\sigma$ is equal to $C\left(\pi_{1}+\pi_{2}\right)$. The "addition on the outside" is the map $\pi \stackrel{\text { def }}{=} C\left(\pi_{1}\right)+C\left(\pi_{2}\right)$.

If $C$ is additive, then $\sigma=\pi$. We say that $C$ is additive up to homotopy if $\sigma$ and $\pi$ are homotopic for all $A$.

## 4. MacLane's $Q^{\prime}$ construction

4.1. Let $\mathscr{A}$ be an abelian category and let $F: \mathscr{A} \rightarrow \mathscr{A}$ be a functor. We will think of $F(A)$ as the "free" object generated by $A$. Indeed, the typical example is $\mathscr{A}=\operatorname{Mod}_{R}$ and $F(M)=R[M]$.

For any $A \in \mathscr{A}$, let $\pi_{1}, \pi_{2}: A^{2} \rightarrow A$ be the two projection maps, and define

$$
\pi=F\left(\pi_{1}\right)+F\left(\pi_{2}\right), \quad \sigma=F\left(\pi_{1}+\pi_{2}\right) .
$$

Note that $\pi_{1}+\pi_{2}$ is the addition map $A^{2} \rightarrow A$.
4.2. Construction. We define a functorial complex

$$
Q_{F}^{\prime}(A): \quad \cdots \rightarrow F\left(A^{2^{i}}\right) \rightarrow \cdots \rightarrow F\left(A^{4}\right) \rightarrow F\left(A^{2}\right) \rightarrow F(A)
$$

that is additive up to homotopy and such that the components of the homotopy between $\sigma$ and $\pi$ are the identity. This characterises $Q_{F}^{\prime}$ uniquely.

Indeed, the homotopy condition

$$
\pi-\sigma=h_{i} \circ d_{i-1}\left(A^{2}\right)+d_{i}(A) \circ h_{i+1}
$$

simplifies to $\pi-\sigma=d_{i-1}\left(A^{2}\right)+d_{i}(A)$, from which we find a recursive definition for the differentials $d_{i}(A)$.
4.3. Usually, the functor $F$ is clear from the context, and we will simply write $Q^{\prime}$ for $Q_{F}^{\prime}$.

The complex $Q^{\prime}$ is known as MacLane's $Q^{\prime}$-construction, and appears already in $\S 12$ of [1].
4.4. Lemma. Let $A$ and $B$ be abelian groups, and assume $A$ is torsion-free. Let $F: \mathrm{Ab} \rightarrow \mathrm{Ab}$ be the functor $\mathbb{Z}[-]$ and consider $Q^{\prime}=Q_{F}^{\prime}$. If $\operatorname{RHom}\left(Q^{\prime}(A), B\right)=0$ then $\operatorname{RHom}(A, B)=0$.

Proof. We apply Lemma 3.3 to obtain the result. Let us check the conditions. Indeed, Ab is AB 4 , and $-\otimes A$ is exact because $A$ is torsion-free.

Since $\mathbb{Z}[-]$ preserves filtered colimits, we see that $H_{k}\left(Q^{\prime}(-)\right)$ preserves filtered colimits. It is additive because $Q^{\prime}(-)$ is additive up to homotopy. Therefore $H_{k}\left(Q^{\prime}(A)\right) \cong H_{k}\left(Q^{\prime}(\mathbb{Z})\right) \otimes A$, because $A$ is torsion-free.

Finally observe that $H_{0}\left(Q^{\prime}(A)\right) \cong A$, as $A$ is naturally the cokernel of

$$
\begin{aligned}
\mathbb{Z}\left[A^{2}\right] & \rightarrow \mathbb{Z}[A] \\
{[a, b] } & \mapsto[a]+[b]-[a+b]
\end{aligned}
$$

## 5. Condensed abelian groups

5.1. Suppose that $\mathscr{A}=\operatorname{Cond}(\mathrm{Ab})$. This is again an AB 4 -category, and there is a natural action $\mathrm{Ab} \otimes \operatorname{Cond}(\mathrm{Ab}) \rightarrow \operatorname{Cond}(\mathrm{Ab}):$ for $H \in \mathrm{Ab}$ and $A \in \operatorname{Cond}(\mathrm{Ab})$ the presheaf $S \mapsto H \otimes A(S)$ is already a sheaf.

Let $F: \operatorname{Cond}(\mathrm{Ab}) \rightarrow \operatorname{Cond}(\mathrm{Ab})$ be the functor $\mathbb{Z}[-]$ that sends $A$ to the sheafification of $S \mapsto \mathbb{Z}[A(S)]$. We will consider $Q^{\prime}=Q_{F}^{\prime}$ in this section.
5.2. Lemma. Let $A$ and $B$ be condensed abelian groups, and assume $A(S)$ is torsion-free for all extremally disconnected $S$. If $\operatorname{RHom}\left(Q^{\prime}(A), B\right)=0$ then $\operatorname{RHom}(A, B)=0$.

Proof. We wish to apply Lemma 3.3 again. On the level of presheaves, we have a natural isomorphism between $S \mapsto H_{k}\left(Q^{\prime}(A(S))\right)$ and $S \mapsto H_{k}\left(Q^{\prime}(\mathbb{Z})\right) \otimes A(S)$. Thus the same is true after sheafification.

The other conditions are similarly easy to verify.

## 6. A cubical construction of $Q^{\prime}$

6.1. Remark. We will now give a different construction of $Q^{\prime}$ as the alternating face map complex of a semi-simplicial complex attached to a natural cubical complex. This remark and the lemma that follows it are not essential for the rest of the note.

Let $\square=\{0,1\}$ denote a set with two elements. Then we can consider $\square^{n}$ as a discrete cube. For every $n$ and every $0 \leq i \leq n$ and every $b \in \square$ we have natural maps $f_{b}^{n, i}: \square^{n} \rightarrow \square^{n+1}$ that maps $\square^{n}$ to the $(i, b)$-th face of $\square^{n+1}$. Concretely

$$
\left(x_{1}, \ldots, x_{n}\right) \mapsto\left(x_{1}, \ldots, x_{i-1}, b, x_{i}, \ldots, x_{n}\right)
$$

If we have some object $A \in \mathscr{A}$, then we get natural maps $\left(f_{b}^{n, i}\right)^{*}: A^{\square^{n+1}} \rightarrow A^{\square^{n}}$ by pullback (aka composition).

Abstractly, we can say that $A^{\square^{\bullet}}$ is a cubical object. From this cubical object, we are going to build a chain complex

$$
\cdots \rightarrow \xrightarrow{d_{n}} F\left(A^{\square^{n}}\right) \rightarrow \ldots \xrightarrow{d_{1}} \underbrace{F\left(A^{\square^{1}}\right)}_{=F\left(A^{\square}\right)} \xrightarrow{d_{0}} \underbrace{F\left(A^{\square^{0}}\right)}_{=F(A)}
$$

Since $A$ is an object of an abelian category, we can consider the morphism

$$
\sigma^{n, i}:=\left(f_{0}^{n, i}\right)^{*}+\left(f_{1}^{n, i}\right)^{*}: A^{\square^{n+1}} \rightarrow A^{\square^{n}}
$$

Now we define

$$
d_{n}:=\sum_{i}(-1)^{i} \cdot\left(F\left(\left(f_{0}^{n, i}\right)^{*}\right)+F\left(\left(f_{1}^{n, i}\right)^{*}\right)-F\left(\sigma^{n, i}\right)\right)
$$

This is the differential in the complex above.
6.2. Lemma. This cubical construction yields a chain complex that is naturally isomorphic to $Q^{\prime}(A)$.

Proof. Certainly, the two complexes have the same differentials in degree 0 , namely $F\left(\pi_{1}\right)+$ $F\left(\pi_{2}\right)-F\left(\pi_{1}+\pi_{2}\right)$. We leave it as an exercise to the reader to verify recursively that the other differentials also agree.

## References

[1] Samuel Eilenberg and Saunders MacLane. "Homology theories for multiplicative systems". English. In: Trans. Am. Math. Soc. 71 (1951), pp. 294-330.
[2] P. Scholze. "Lectures on Condensed Mathematics". 2019.

