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1. Introduction

1.1. The purpose of this note is to construct a functorial complex Q′(A) with the following two
properties:

(i) Every object Q′(A)i is of the form
⊕ni

j=1 Z[Ar
i,j ].

(ii) Modulo some details that will be made precise below, we have

RHom(Q′(A), B) = 0 =⇒ RHom(A,B) = 0.

See Lemma 4.4 for the actual statement.

2. Breen–Deligne resolutions

2.1. Theorem (Breen, Deligne, [2, Appendix to §IV]). There exists a functorial resolution BD(A)

of an abelian group A of the form

· · · →
ni⊕
j=1

Z[Ari,j ] → · · · → Z[A3]⊕ Z[A2] → Z[A2] → Z[A] → A → 0

where all ni and ri,j are natural numbers.

Proof. See the appendix to Lecture IV in [2]. The proof uses a nontrivial amount of homotopy
theory. □

2.2. Remark. The map Z[A] → A is simply the evaluation morphism
∑

ca[a] 7→
∑

caa. The
kernel of this map is generated by elements of the form [a] + [b]− [a+ b]. In particular, the map
Z[A2] → Z[A] is the map induced by (a, b) 7→ [a] + [b]− [a+ b].

The kernel of that map is generated by elements of the form

[a, b+ c] + [b, c]− [a, b]− [a+ b, c] and [a, b]− [b, a].

The fact that this process can be continued to form a functorial resolution is the non-trivial
content of Theorem 2.1.

2.3. Breen–Deligne resolutions have some very favourable properties, which have been used in [2].

(i) First and foremost, they are functorial in the abelian group A.
(ii) They exist in the generality of abelian group objects in any sheaf topos.
(iii) There exists a functorial homotopy between the “outer” and “inner” addition maps

BD(A2) → BD(A). See 3.6.
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2.4. Philosophical remark: Due to the inexplicit nature of the proof of Theorem 2.1, these
Breen–Deligne resolutions cannot be used to compute explicit values of derived functors apart
from vanishing results. Indeed, it seems that this is how Breen–Deligne resolutions are typically
applied.

3. The engine

3.1. We now give a setup in which we can give an elementary alternative to Breen–Deligne
resolutions. This setup applies to (condensed) abelian groups. It could be generalised further,
but I do no know of elementary proofs in the general setting.

3.2. Let A be an abelian category with enough projectives, and assume that there is an action
Ab ⊗ A → A that preserves coproducts in the first factor and such that Z ⊗ − is naturally
isomorphic to the identity. NB: this forces A to have arbitrary coproducts.

Finally, assume that A is an AB4-category, so that Exti(−,−) will turn coproducts in the
first entry into products.

3.3. Lemma. Let A and B be objects of A , and let C ∈ Ch≥0(A ) be a chain complex. Assume
that

• H0(C) ∼= A;
• for all i > 0, there exists an abelian group H such that Hi(C) ∼= H ⊗A;
• the functor −⊗A is exact.

Let j be a natural number. Then the following implication holds: If Exti(C,B) = 0 for all i ≤ j

then also Exti(A,B) = 0 for all i ≤ j.

Proof. We induct on j. For j = 0, note that every homomorphism C → B factors uniquely over
H0(C). Since we assumed H0(C) ∼= A, we are done.

Now assume the result is true for j. Let S be the class of all complexes T ∈ Ch≥0(A ) for
which Exti(T,B) = 0 for all i ≤ j + 1. We assume that C ∈ S , and we want to conclude A ∈ S .

The class S has the following two properties:

(i) It is closed under arbitrary coproducts (since A is AB4).
(ii) If T1 → T2 → T3

+1→ is a triangle and T1 ∈ S then T2 ∈ S ⇐⇒ T3 ∈ S (by the long
exact sequence of Ext-groups).

Now consider the triangles

∆k : τ≥k+1C → τ≥kC → Hk(C)[k]
+1→

For k > j, we know that τ≥k+1C ∈ S .
We will be done if we show Hk(C)[k] ∈ S for k > 0. Indeed, if that is the case, we have

τ≥kC ∈ S for all k > 0, by descending induction on k and the closure property of S for the
triangles ∆k. Finally, since τ≥0C = C, we use ∆0 to conclude H0(C)[0] ∼= A ∈ S .

Let k > 0. We want to show Hk(C)[k] ∈ S . By assumption, it suffices to show that
H ⊗A[k] ∈ S for arbitrary abelian groups H. Furthermore, we point out that A[k] ∈ S , by the
induction hypothesis. Indeed, Exti(A[k], B) = Exti−k(A,B) = 0 for all i ≤ j + 1 since i− k ≤ j.

Let H be any abelian group, and consider a two-step free resolution

0 →
⊕
s∈S1

Z →
⊕
s∈S0

Z → H → 0.
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Since −⊗A is exact and preserves coproducts, we obtain a short exact sequence

0 →
⊕
s∈S1

A →
⊕
s∈S0

A → H ⊗A → 0.

We conclude that H ⊗ A[k] ∈ S , since A[k] ∈ S . In particular, Hk(C)[k] is contained in S ,
which finishes the proof. □

3.4. We now wish to find situations where Lemma 3.3 can be applied. First consider the case
A = Ab. In that case, the condition that − ⊗ A is exact means that we should consider flat
abelian groups, a.k.a. torsion-free abelian groups.

If A is torsion-free, then it is naturally a filtered colimit of finitely-generated free groups.
(Indeed, it is the union of its finitely generated subgroups, which are free.)

3.5. Let C : Ab → Ch≥0(Ab) be a functor. Then there is a natural map

A → Hom(Hk(C(Z)), Hk(C(A)))

a 7→ Hk(C(1 7→ a)),

inducing a natural map Hk(C(Z)) ⊗ A → Hk(C(A)). Suppose that Hk(C(−)) is additive and
preserves filtered colimits. Then this natural map is an isomorphism for torsion-free abelian
groups A.

Note that Hk is additive and preserves filtered colimits. Below, we will construct and example
of a functor C that preserves filtered colimits, and is additive up to homotopy. This is good
enough, because the composition Hk(C(−)) will then be additive.

3.6. We say that C is additive up to homotopy if the following condition is satisfied. For
every abelian group A, there is a natural map σ : C(A2) → C(A) induced by the addition map
+: A2 → A. On the other hand, there is also a natural “addition on the outside”, obtained by
adding the two maps C(A2) → C(A) induced by the projection maps π1, π2 : A

2 → A.
Indeed, the addition map +: A2 → A is the sum π1 + π2, and hence σ is equal to C(π1 + π2).

The “addition on the outside” is the map π
def
= C(π1) + C(π2).

If C is additive, then σ = π. We say that C is additive up to homotopy if σ and π are homotopic
for all A.

4. MacLane’s Q′ construction

4.1. Let A be an abelian category and let F : A → A be a functor. We will think of F (A) as
the “free” object generated by A. Indeed, the typical example is A = ModR and F (M) = R[M ].

For any A ∈ A , let π1, π2 : A
2 → A be the two projection maps, and define

π = F (π1) + F (π2), σ = F (π1 + π2).

Note that π1 + π2 is the addition map A2 → A.

4.2. Construction. We define a functorial complex

Q′
F (A) : · · · → F (A2i) → · · · → F (A4) → F (A2) → F (A)

that is additive up to homotopy and such that the components of the homotopy between σ and π

are the identity. This characterises Q′
F uniquely.

Indeed, the homotopy condition

π − σ = hi ◦ di−1(A
2) + di(A) ◦ hi+1
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simplifies to π−σ = di−1(A
2)+di(A), from which we find a recursive definition for the differentials

di(A).

4.3. Usually, the functor F is clear from the context, and we will simply write Q′ for Q′
F .

The complex Q′ is known as MacLane’s Q′-construction, and appears already in §12 of [1].

4.4. Lemma. Let A and B be abelian groups, and assume A is torsion-free. Let F : Ab → Ab be
the functor Z[−] and consider Q′ = Q′

F . If RHom(Q′(A), B) = 0 then RHom(A,B) = 0.

Proof. We apply Lemma 3.3 to obtain the result. Let us check the conditions. Indeed, Ab is
AB4, and −⊗A is exact because A is torsion-free.

Since Z[−] preserves filtered colimits, we see that Hk(Q
′(−)) preserves filtered colimits. It

is additive because Q′(−) is additive up to homotopy. Therefore Hk(Q
′(A)) ∼= Hk(Q

′(Z))⊗A,
because A is torsion-free.

Finally observe that H0(Q
′(A)) ∼= A, as A is naturally the cokernel of

Z[A2] → Z[A]

[a, b] 7→ [a] + [b]− [a+ b]. □

5. Condensed abelian groups

5.1. Suppose that A = Cond(Ab). This is again an AB4-category, and there is a natural action
Ab ⊗ Cond(Ab) → Cond(Ab): for H ∈ Ab and A ∈ Cond(Ab) the presheaf S 7→ H ⊗ A(S) is
already a sheaf.

Let F : Cond(Ab) → Cond(Ab) be the functor Z[−] that sends A to the sheafification of
S 7→ Z[A(S)]. We will consider Q′ = Q′

F in this section.

5.2. Lemma. Let A and B be condensed abelian groups, and assume A(S) is torsion-free for all
extremally disconnected S. If RHom(Q′(A), B) = 0 then RHom(A,B) = 0.

Proof. We wish to apply Lemma 3.3 again. On the level of presheaves, we have a natural
isomorphism between S 7→ Hk(Q

′(A(S))) and S 7→ Hk(Q
′(Z)) ⊗ A(S). Thus the same is true

after sheafification.
The other conditions are similarly easy to verify. □

6. A cubical construction of Q′

6.1. Remark. We will now give a different construction of Q′ as the alternating face map complex
of a semi-simplicial complex attached to a natural cubical complex. This remark and the lemma
that follows it are not essential for the rest of the note.

Let □ = {0, 1} denote a set with two elements. Then we can consider □n as a discrete cube.
For every n and every 0 ≤ i ≤ n and every b ∈ □ we have natural maps fn,i

b : □n → □n+1 that
maps □n to the (i, b)-th face of □n+1. Concretely

(x1, . . . , xn) 7→ (x1, . . . , xi−1, b, xi, . . . , xn).

If we have some object A ∈ A , then we get natural maps (fn,i
b )∗ : A□n+1 → A□n

by pullback
(aka composition).
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Abstractly, we can say that A□•
is a cubical object. From this cubical object, we are going to

build a chain complex

· · · → dn−→ F (A□n

) → . . .
d1−→ F (A□1

)︸ ︷︷ ︸
=F (A□)

d0−→ F (A□0

)︸ ︷︷ ︸
=F (A)

Since A is an object of an abelian category, we can consider the morphism

σn,i := (fn,i
0 )∗ + (fn,i

1 )∗ : A□n+1

→ A□n

Now we define
dn :=

∑
i

(−1)i · (F ((fn,i
0 )∗) + F ((fn,i

1 )∗)− F (σn,i))

This is the differential in the complex above.

6.2. Lemma. This cubical construction yields a chain complex that is naturally isomorphic to
Q′(A).

Proof. Certainly, the two complexes have the same differentials in degree 0, namely F (π1) +

F (π2)− F (π1 + π2). We leave it as an exercise to the reader to verify recursively that the other
differentials also agree. □
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